
Automated Ensemble Extraction and Analysis of

Acoustic Data Streams

Eric P. Kasten and Philip K. McKinley

Department of Computer Science and Engineering

Michigan State University

East Lansing, Michigan 48824

{kasten,mckinley}@cse.msu.edu

Stuart H. Gage

Department of Entomology

Michigan State University

East Lansing, Michigan 48824

gages@msu.edu

Abstract

This paper addresses the design and use of distributed

pipelines for automated processing of sensor data streams.

In particular, we focus on the detection and extraction

of meaningful sequences, called ensembles, from acoustic

data streamed from natural areas. Our goal is automated

detection and identification of various species of birds. Al-

though this target application is relatively specific, the pro-

cess employed is general and can be extended to other prob-

lem domains such as security systems and military recon-

naissance.

1 Introduction

Advances in technology have enabled new approaches

for sensing the environment and collecting data about the

world; an important application domain is ecosystem mon-

itoring [1–3]. Small, powerful sensors can collect data and

extend our perception beyond that afforded by our natu-

ral biological senses. Moreover, wireless networks enable

data to be acquired simultaneously from multiple geograph-

ically remote and diverse locations. Once collected, sensor

readings can be assembled into data streams and transmit-

ted over computer networks to observatories, such as the

National Ecological Observatory Network (NEON) [4, 5],

which provide computing resources for the storage, analy-

sis and dissemination of environmental and ecological data.

Such information is important to improving our understand-

ing of environmental and ecological processes. For in-

stance, early detection and tracking of invasive species may

enable the establishment of policies for their control [6].

When data is continuously collected, automated and adap-

tive processing facilitates the organization and searching of

the resulting data repositories. Without timely processing,

the sheer volume of the data might preclude the extraction

of information of interest.

The main contribution of this paper is to introduce a pro-

cess that enables detection and extraction of meaningful

sequences, called ensembles, from acoustic data streams.

Here we apply this method to support automated detection

and classification of bird species using a perceptual mem-

ory system that supports online, incremental learning [7].

Results of our classification experiments are promising and

suggest that acoustics can enable automated monitoring of

natural environments. Moreover, the extraction of ensem-

bles from acoustic clips reduced the amount of data to be

processed by approximately 80%. To support the study, we

designed and implemented a dynamic distributed pipeline

prototype, called Dynamic River, which enables sets of op-

erators to be dynamically relocated to more suitable hosts

to improve quality-of-service.

The remainder of this paper is organized as follows. Sec-

tion 2 describes background on data collection and process-

ing methods. Section 3 describes in detail the approach for

ensemble extraction, and Section 4 presents the results of

our experiments using ensemble extraction for classification

of bird species. Section 5 describes related work, and Sec-

tion 6 concludes the paper. Due to space limitations, many

details of this study are omitted here, but may be found in

an accompanying technical report [8].

2 Background

Data Collection. This study addresses the automated

classification of bird species using acoustic data streams

collected in natural environments. Acoustic data is col-

lected from in field sensor stations located at the Kellogg

Biological Research Station (KBS) and other locations in

Michigan. Figure 1(a) shows an acoustic sensor station used

in this study. Each station comprises a pole-mounted sensor

unit and a solar panel coupled with a deep cycle battery for

providing power over extended periods. Figure 1(b) shows

the internal components of the sensor unit. Each sensor unit

contains a Crossbow Stargate processing platform equipped

with a microphone and an 802.11b wireless interface card.

The Stargate platform has a 400MHz Intel PXA225 pro-

cessor and 64MB of RAM. The operating system used is

TinyOS. Acoustic clips are collected by the sensor units

and transmitted over a wireless network for later relay to

the CEVL. Currently, clips are approximately 30 seconds

long, comprising approximately 1.26MB of data, and are

collected every 30 minutes.

(a) Sensor station (b) Sensor unit

Figure 1. Acoustic sensor station and unit.

Bird vocalizations vary considerably even within a par-

ticular bird species. Young birds learn their songs with ref-

erence to adult vocalizations during sensitive periods [9].

At maturity, the song of a specific bird will crystallize into

a species-specific stereotypical form. However, even stereo-

typical songs vary between individual birds of the same

species. Moreover, many vocalizations are not stereotypical

but are instead plastic, and may change when sung or due

to seasonal change, while some species can learn new songs

throughout their lives. Extraction of candidate bird vocal-

izations from acoustic streams enables accurate recognition

of a species, where misidentification one species as another

should be avoided.

Time series processing. Figure 2 depicts two common

methods for visualizing an acoustic clip. The top graph

shows a plot of the signal’s amplitude, or oscillogram, nor-

malized by subtracting the mean and scaling by the max-

imum amplitude. The bottom graph shows the same clip

plotted as an acoustic spectrogram. A spectrogram depicts

frequency on the vertical axis and time on the horizontal

axis. Shading indicates the intensity of the signal at a par-

ticular frequency and time. In this study, spectrogram seg-

ments are distilled into signatures that can be used to iden-

tify the bird species that produced a particular vocalization.

0
1

A
m
p
li
tu
d
e

K
H
z

−
1

0
1
1

5
.5

10 20 30 38
Seconds

0

Figure 2. An oscillogram (top) and spectogram

(bottom) of an acoustic signal.

Piecewise aggregate approximation (PAA) was intro-

duced by Keogh et al. [10], and independently by Yi and

Faloutsos [11], as a means to reduce the dimensionality of

time series. An original time series sequence, Q, of length

n is converted to PAA representation, Q. First, Q is Z-

normalized as follows:

∀i qi =
qi − µ

σ
,

where µ is the vector mean of original signal, σ is corre-

sponding standard deviation and qi is the ith element of Q.

Second, Q is segmented into w ≤ n equal sized subse-

quences, and the mean of each subsequence computed. Q

comprises the mean values for all subsequences of Q.

PAA smoothes intra-signal variation and reduces pattern

dimensionality, while Z-normalization helps equalize simi-

lar acoustic patterns that differ in signal strength. Figure 3

depicts the spectrogram shown in Figure 2 after conversion

to PAA representation. This spectrogram was constructed

by applying PAA to the frequency data comprising each col-

umn of the original spectrogram. Despite smoothing and

reduction using PAA, these spectrograms are similar in ap-

pearance, demonstrating the potential utility of using PAA

representation.

Extending the benefits of PAA is a representation intro-

duced by Lin et al. [10] called Symbolic Aggregate approX-

imation (SAX). The purpose of SAX is to enable accurate

comparison of time series using a symbolic representation.

As shown in Figure 4, SAX converts a sequence from PAA

representation to symbolic representation, where each sym-

bol (we use integers here) appears with equal probability

based on the assumption that the distribution of time series

subsequences is Gaussian [10].

2

0

0 10 20 30 38

1
1

K
H

z

Seconds

Figure 3. Spectrogram of the acoustic signal (see

Figure 2) after conversion to PAA representation

(stretched vertically for clarity).

5

4

3

2

1

2 3 2 4 3 3 3 4 1 5 3 1 2 4 4 3 4 3SAX =

 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 2

Figure 4. Conversion of the example PAA

processed signal converted to SAX (adapted

from [10]).

Kumar et al. [12] proposed time series bitmaps for vi-

sualization and anomaly detection in time series. SAX

bitmaps are constructed by counting occurrences of sym-

bolic subsequences of length n (e.g., 1, 2 or 3 symbols).

Each bitmap can be represented using an n-dimensional

matrix, where each cell represents a specific subsequence.

Each cell contains the frequency with which the corre-

sponding subsequence occurs. Frequencies are computed

by dividing the subsequence count by the total number of

subsequences. An anomaly score can be computed by com-

paring two concatenated bitmap matrices using Euclidean

distance. As further discussed in Section 3, we use SAX

bitmap matrices to compute an anomaly score for acous-

tic signals, enabling the extraction of bird vocalizations and

other acoustic events.

MESO. For classification and detection experiments we

use MESO [7], a perceptual memory system designed to

support online, incremental learning and decision making

in autonomic systems. MESO is based on the well-known

leader-follower algorithm, an online, incremental technique

for clustering a data set. A novel feature of MESO is its use

of small agglomerative clusters, called sensitivity spheres,

that aggregate similar training patterns. Once MESO has

been trained, the system can be queried using an unlabeled

pattern. MESO tests the new pattern and returns the label

associated with the most similar training pattern or a sen-

sitivity sphere containing a set of similar training patterns

and their labels. When evaluated on standard data sets,

MESO accuracy compares very favorably with other classi-

fiers, while requiring less training and testing time in most

cases [7].

Dynamic River. We have developed a prototype sys-

tem, Dynamic River [8], that enables the construction of a

distributed stream processing pipeline. A Dynamic River

pipeline is defined as a sequential set of operations com-

posed between a data source and it’s final sink (destina-

tion). The network operators enable record processing to

be distributed across the processor and memory resources of

many hosts. Pipeline segments are created by composing se-

quences of operators that produce a partial result important

to the overall pipeline application. Segments can receive

and emit records using the streamin and streamout

operators, respectively, enabling instantiation of segments

and the construction of a pipeline across networked hosts.

Moreover, pipelines can be recomposed dynamically by

moving segments among hosts.

Preserving the integrity of data streams in the presence of

a dynamic environment is a challenging problem. Dynamic

River records can be grouped using record subtype,

scope and scope type header fields. We define a

data stream scope as a sequence of records that share

some contextual meaning, such as having been produced

from the same acoustic clip. Within the data stream, each

scope begins with an OpenScope record and ends with a

CloseScope record. Optionally, CloseScope records

can be replaced with BadCloseScope records to en-

able scope closure while indicating that the scope has not

reached its intended point of closure. For instance, if an up-

stream segment terminates unexpectedly and leaves one or

more scopes open, the streamin operator will generate

BadCloseScope records to close all open scopes,

Scopes can be nested. The scope field indicates the

current scope nesting depth, larger values indicate greater

nesting while scope depth 0 indicates the outermost scope.

The scope type field enables the specification of an ap-

plication specific scope type. For instance, a scope can be

identified as comprising an acoustic clip or an ensemble.

Optionally, OpenScope records may contain context in-

formation, such as the sampling rate of an acoustic clip.

Scoping can also be used to support graceful shutdown and

fault tolerance in streaming applications [8].

3 Ensemble Extraction and Processing

A sensor data stream is a time series comprising contin-

uous or periodic sensor readings. Typically, readings taken

from a specific sensor can be identified and each reading ap-

pears in the time series in the order acquired. Online cluster-

ing or detection of interesting sequences benefits from time-

3

efficient, distributed processing that extracts finite candidate

sequences from the original time series.

We define ensembles as time series sequences that recur,

though perhaps rarely. This definition is similar to other

time series terms. For instance, a motif [13] is defined as

a sequence that occurs frequently and a discord [14] is de-

fined as the sequence that is least similar to all other se-

quences. A notable limitation for finding a discord in a

time series is that the time series must be finite. Our use

of ensembles addresses this limitation by using a finite win-

dow for computing an anomaly score and thereby detecting

a distinct change in time series behavior. An anomaly score

greater than a specified threshold is considered as indicat-

ing the start of an ensemble that continues until the anomaly

score falls below the threshold.

Figure 5 depicts a typical approach to data acquisition

and analysis using a Dynamic River pipeline that targets

ecosystem monitoring using acoustics. First, audio clips

are acquired by a sensor platform and transmitted to a

readout operator that writes the clips to record for stor-

age. Although additional record processing is possible prior

to storage, it is often desirable to retain a copy of the raw

data for later study. During analysis, a data feed is invoked

to read clips from storage and write them to wav2rec

to encapsulate acoustic data (WAV format in this case) in

pipeline records. The remaining operators comprise the

process for extracting ensembles and processing them for

classification or detection using MESO.

The operators saxanomally, trigger, and

cutter compose a pipeline segment that transforms

records comprising acoustic data into ensembles. The in-

coming record stream is scoped, with each clip delimited

by an OpenScope/CloseScope pair. The outgoing

record stream comprises ensembles that are also delimited

by an OpenScope/CloseScope pair. The clip and en-

semble scopes are typed, using the scope type record

header field, as scope clip or scope ensemble

respectively.

The moving average of the SAX anomaly score, as de-

scribed in Section 2, is output by saxanomaly in addition

to the original acoustic data. Parameters, such as the SAX

anomaly window size, SAX alphabet size and a moving av-

erage window size, can be set to meet the needs of a par-

ticular application or data set. The SAX anomaly window

size specifies the number of samples to use for construct-

ing each concatenated matrix used for computing the SAX

anomaly score, for a given SAX alphabet. The moving av-

erage window size specifies the number of anomaly scores

to use for computing a mean anomaly score that is output by

saxanomaly. Using a moving average smoothes anomaly

score “spikes” over a longer period that can be used as

a window of anomalous behavior by the cutter opera-

tor. In our experiments with environmental acoustics, we

Figure 5. Block diagram of pipeline operators for

converting acoustic clips into ensembles for de­

tection of bird species.

set the moving average window to 2250 samples, the SAX

anomaly window to 100 samples and the SAX alphabet size

to 8.

Figure 6 depicts the trigger signal output by the

trigger operator (top) and the corresponding ensem-

bles extracted from the original acoustic signal depicted

in Figure 2 by the cutter operator (bottom). The

trigger operator transforms the anomaly score output by

saxanomaly into a trigger signal that has the discrete val-

ues of either 0 or 1. The trigger operator is adaptive

in that it incrementally computes an estimate of the mean

anomaly score, µ0, for values when the trigger value is 0.

Trigger emits a value of 1 when the anomaly score is

more than 5 standard deviations from µ0 and a 0 otherwise.

The number of standard deviations is specific to the partic-

ular data set or application.

The cutter operator reads both the records contain-

ing the original acoustic signal and the records emitted by

trigger. When the trigger signal transitions from 0 to

1, cutter emits an OpenScope record, designating the

start of an ensemble, and begins composing an ensemble.

Each ensemble comprises values from the original acoustic

4

0
2

1
−

1
1

0

Seconds
20 30 380 10

A
m

p
li
tu

d
e

T
ri

g
g

e
r

V
a
lu

e

Figure 6. Trigger signal and ensembles extracted

from the acoustic signal shown in Figure 2.

signal that correspond to when the trigger value is 1. When

the trigger value transitions from 1 to 0, cutter emits

a CloseScope record, and resumes consuming acoustic

values until the trigger value again transitions to 1. The

record stream, as emitted from cutter, comprises clips

that contain one or more ensembles.

The operators, reslice, welchwindow,

float2cplx, dft and cabs compose a pipeline

segment that transforms the amplitude data of each

ensemble into a frequency domain (power spectrum) rep-

resentation. First, for each pair of ensemble records, the

reslice operator constructs a new record comprising

the last half of the first record and the second half of the

second original record. This new record is then inserted

into the record stream between the two original records.

The remainder of the pipeline segment computes a float-

ing point representation of each ensemble’s spectrogram,

where each ensemble comprises one or more records of

spectral data. This computation proceeds as follows: the

welchwindow operator applies a Welch window to each

“resliced” record, helping minimize edge effects between

records; then float2cplx converts each value to com-

plex number format required by the dft operator for

computing the discrete Fourier transform; finally, cabs

computes the complex absolute value of each complex

value, emitted by dft, as a floating point value.

Next, each record of each ensemble is passed to the

cutout operator. The cutout operator selects specific

frequency ranges from each record and emits records com-

prising only these ranges. Data outside of the selected range

is discarded. For our classification experiments, the fre-

quency range ≈[1.2kHz,9.6kHz] was cutout. Frequen-

cies above and below this range typically have little data

useful for classification or detection of bird species. More-

over, data below this range typically comprises low fre-

quency noise, including the sound of wind and sounds pro-

duced by human activity.

The optional paa operator reduces each record to a PAA

representation as discussed in Section 2. For our experi-

ments, we used records that were either reduced by a fac-

tor of 10 using PAA or that were not reduced. The effec-

tiveness of using PAA representation for smoothing acous-

tic spectral data is demonstrated in Section 4. Finally, the

rec2vect operator converts pipeline records to vectors of

floating point values (patterns), suitable for use in our clas-

sification and detection experiments with MESO.

4 Assessment

Listed in Table 1 are the four-letter species codes and the

common names for the 10 bird species whose vocalizations

we use in our experiments. Also listed are the number of in-

dividual patterns and ensembles extracted from the recorded

vocalizations and included in our experimental data sets.

For testing classification accuracy, we used four data sets

produced from a set of audio clips; each extracted ensemble

contains the vocalization from one of the 10 bird species.

Although each ensemble contains the vocalization for only

a single species, the clips typically contain other sounds

such as those produced by wind and human activity. Ad-

ditionally results can be found in the technical report [8].

Table 1. Bird species codes, names and counts.

Code Common name Patterns Ensembles

AMGO American goldfinch 229 42
BCCH Black capped chickadee 672 68
BLJA Blue Jay 318 51
DOWO Downy woodpecker 272 50
HOFI House finch 223 26
MODO Mourning dove 338 24
NOCA Northern cardinal 395 42
RWBL Red winged blackbird 211 27
TUTI Tufted titmouse 339 59
WBNU White breasted nuthatch 676 84

Ensemble data sets. Two ensemble data sets, compris-

ing 473 ensembles, were produced using the method de-

scribed in Section 3. The data sets differ in that one was

processed with PAA while the other was not. The ensem-

bles produced by the cutter operator were validated by

a human listener as being a bird vocalization. The vali-

dated ensembles were then fed to the dft operator for fur-

ther processing (refer to Figure 5). Each ensemble com-

prises one or more patterns. Each pattern was constructed

by merging 3 frequency domain records. A single pat-

tern represents 0.125 seconds of acoustic data in the range

≈[1.2kHz,9.6kHz] and comprises either 1050 features or,

when processed with PAA, 105 features. A voting approach

is used for testing each ensemble, specifically each pattern

belonging to a given ensemble is tested independently and

represents a “vote” for the species indicated by the test. The

species with the most votes is returned as the recognized

species.

Pattern data sets. Each of the two pattern data sets com-

prises 3,673 patterns extracted from the 473 ensembles in

the ensemble data sets. Like the ensemble data sets, each

5

pattern has either 1050 or 105 features and represents 0.125

seconds of acoustic data. Ensemble grouping is not retained

and, as such, recognition is based on testing with a single

pattern.

Experimental method and assessment. Extraction of

ensembles from acoustic clips reduced the amount of data

that required further processing by 80.6%. As such, auto-

mated ensemble extraction helps address the need for timely

processing of large volumes of data found when continu-

ously collecting sensor readings. To verify the viability of

using ensembles for birdsong recognition, we tested clas-

sification accuracy using cross-validation experiments as

described by Murthy et al. [15] using a leave-one-out ap-

proach [16]. The leave-out-out approach was used due to

the high variability found in bird vocalizations and the rel-

atively small size of the data sets. Each experiment is con-

ducted as follows:

1. Randomize the data set. For the ensemble data set,

randomize the order of the ensembles. For the pattern

data set, randomize the order of the patterns.

2. In turn select each ensemble/pattern as a test pattern,

train MESO using all remaining data. Test MESO us-

ing the single selected ensemble/pattern.

3. Calculate the classification accuracy by dividing the

sum of all correct classifications by the total number

of ensemble/patterns.

4. Repeat the preceding steps n times, and calculate the

mean and standard deviation for the n iterations.

In our leave-one-out tests, we set n equal to 20. Thus,

for each mean and standard deviation calculated, MESO is

trained and tested 9,460 times in the case of the ensemble

data set and 73,500 times in the case of the pattern data set.

We also executed a resubstitution test, where MESO was

both trained and tested using the entire data set. Although

lacking statistical independence between training and test-

ing data, resubstitution affords an estimate of the maxi-

mum classification accuracy expected for particular data set.

Each experiment is conducted as follows:

1. Randomize the data set. For the ensemble data set,

randomize the order of the ensembles. For the pattern

data set, randomize the order of the patterns.

2. Train and test MESO using all ensembles/patterns.

3. Calculate the classification accuracy by dividing the

sum of all correct classifications by the total number

of ensemble/patterns.

4. Repeat the preceding steps n times, and calculate the

mean and standard deviation for the n iterations.

In our resubstitution tests, we set n equal to 100. Thus,

for each mean and standard deviation calculated, MESO is

trained and tested 100 times for both the pattern and ensem-

ble data sets.

Table 2 summarizes the accuracies and timing results

for the four birdsong data sets. Resubstitution is greater

than 92% accurate for all data sets while leave-one-out re-

sults are somewhat less accurate. Given that bird vocaliza-

tions are highly variable and that data set sizes are relatively

small, we can consider these results promising.

Table 2. MESO classification results.

Data set Accuracy%/Time(s)

Pattern
Leave-one-out 71.5%±0.9%
Resubstitution 92.3%±3.1%
Training 57.7±1.1
Testing 57.7±1.9

Ensemble
Leave-one-out 76.0%±1.1%
Resubstitution 96.3%±2.8%
Training 56.1±1.7
Testing 58.6±2.8

PAA Pattern
Leave-one-out 80.4%±0.3%
Resubstitution 94.7%±0.8%
Training 57.7±1.1
Testing 57.7±1.9

PAA Esnemble
Leave-one-out 82.2%±0.9%
Resubstitution 97.2%±1.2%
Training 56.1±1.7
Testing 58.6±2.8

Table 3 shows the confusion matrix for classification us-

ing PAA ensembles and the leave-one-out approach. Matrix

columns are labeled with the species predicted by MESO,

while rows are labeled with the species that actually pro-

duced the original vocalization. The main diagonal (in

bold) indicates the percentage of patterns correctly classi-

fied. Other cells indicate the percentage of patterns con-

fused with other species. For instance, the intersection of

the row labeled AMGO with the column labeled BLJA indi-

cates that 0.5% of blue jay patterns were confused with the

American goldfinch. As shown, most ensembles are cor-

rectly classified, with the red winged blackbird most likely

to be classified correctly.

5 Related Work

Automated processing of data streams is a large and ac-

tive field; we focus here on several closely related con-

tributions; additional related work is discussed in [7, 8].

Several research projects address selection of tuples from

data streams [17–19]. Such works treat a data stream as

a database and optimize query processing for better effi-

ciency. Our work with automated extraction of ensembles

and annotation of data stream content complements these

6

Table 3. Confusion matrix using ensembles.

Predicted
A
M
G
O

B
C
C
H

B
L
J
A

D
O
W
O

H
O
F
I

M
O
D
O

N
O
C
A

R
W
B
L

T
U
T
I

W
B
N
U

AMGO 70.3 7.8 0.5 1.5 0.5 3.8 2.8 4.5 1.7 6.6
BCCH 5.2 69.2 4.3 2.5 4.4 0.1 2.6 3.7 2.9 5.2
BLJA 2.1 3.5 86.0 0.5 3.4 1.7 0.5 0.2 2.2
DOWO 5.5 0.5 90.5 1.1 0.1 0.1 2.2
HOFI 2.9 1.2 2.3 3.9 79.3 6.6 3.7 0.2
MODO 7.6 1.6 1.8 3.7 4.1 67.0 6.4 3.1 4.7
NOCA 6.0 0.1 0.1 0.3 0.1 90.8 0.6 2.0
RWBL 0.9 0.5 2.8 0.5 0.5 94.7 0.2
TUTI 2.2 2.6 0.7 2.1 1.1 90.5 0.9
WBNU 3.4 0.3 0.1 1.2 4.8 2.4 0.4 1.2 86.1

approaches. For example, annotations can be treated as tu-

ples that describe the underlying data stream and can be

used by selection schemes for routing data stream to ad-

dress application specific requirements.

A number of research projects have addressed the con-

struction of distributed stream processing engines (SPEs)

that provide quality-of-service optimization or guarantees.

Examples include Infopipes [20], Wavescope [21], Au-

rora [22], Medusa [23], Borealis [24] and CANS [25]. Al-

though in general these systems provide functionality sim-

ilar to that of Dynamic River, the latter’s support for scop-

ing while addressing graceful recomposition and fault re-

silience, can be considered its chief advantage. Pipelines

composed for data acquisition and analysis of continuous

sensor data streams must be able to resynchronize and en-

able the continuation of meaningful data stream processing

in the face of pipeline recomposition and faults.

Recently, there has been increased interest on identify-

ing motifs [13, 26] in time series. Motifs are defined as fre-

quently occurring time series sequences. Identification of

motifs requires analysis of a time series to determine which

subsequences occur frequently. Motifs can be used for the

construction of a model that represents the normal behav-

ior of a time series. On the other hand, a discord [14] is

defined as the sequence that is least similar to others. Our

work with ensembles complements work on motifs and dis-

cords in that ensembles can be considered as candidate mo-

tifs or discords. However, rather than focus on the most

or least frequent time series patterns, ensembles are locally

anomalous patterns that may recur only rarely. Our focus is

on the timely, automated processing of continuous streams

of sensor data that likely comprise variable length events.

As such, processor and memory efficient techniques for

extracting and processing ensembles are needed. Our ap-

proach to ensemble extraction requires only a single scan of

a time series and extracts variable length ensembles.

6 Conclusions

We have presented a technique for extracting ensembles

from acoustic data streams with the goal of recognizing bird

species in natural environments. Our Dynamic River proto-

type enables distributed data stream processing with support

for resynchronization of data scope in the face of dynamic

pipeline recomposition or pipeline segment failure. Results

of our classification experiments show promise for automat-

ing species surveys using acoustics. Moreover, ensem-

ble extraction and processing using distributed pipelines

may enable timely annotation and clustering of sensor data

streams. Currently, we have extracted ensembles from data

streams comprising a single signal. Although acoustic data

streams are data rich, extracting ensembles from multiple

correlated data streams may enhance classification and de-

tection of time series events. For instance, species identifi-

cation may be more accurate when acoustic data is coupled

with geographic, weather or other information about the en-

vironment. We plan to address this issue in a future study.

Further information. A number of related papers and

technical reports of the Software Engineering and Net-

work Systems Laboratory and the Computational Ecol-

ogy and Visualization Laboratory can be found at the

following URLs: http://www.cse.msu.edu/sens

and http://www.cevl.msu.edu.

Acknowledgments. The authors would like to thank

Ron Fox and Joo Wooyeong at Michigan State University

for their contributions to this work. This work was sup-

ported in part by the U.S. Department of the Navy, Office of

Naval Research under Grant No. N00014-01-1-0744, Na-

tional Science Foundation grants EIA-0130724, and ITR-

0313142 and a Quality Fund Concept grant from Michigan

State University.

References

[1] J. Porter, P. Arzberger, H.-W. Braun, P. Bryant, S. Gage,

T. Hansen, P. Hanson, C.-C. Lin, F.-P. Lin, T. Kratz,

W. Michener, S. Shapiro, and T. Williams, “Wireless sen-

sor networks for ecology,” Bioscience, vol. 55, pp. 561–572,

July 2005.

[2] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and

D. Culler, “An analysis of a large scale habitat monitoring ap-

plication,” in Proceedings of The Second ACM Conference

on Embedded Networked Sensor Systems (SenSys), (Balti-

more, Maryland, USA), November 2004.

[3] K. Martinez, J. K. Hart, and R. Ong, “Environmental sen-

sor networks,” IEEE Computer, vol. 37, pp. 50–56, August

2004.

[4] P. Arzberger, ed., Sensors for Environmental Observatories,

(Seattle, Washington, USA), World Technology Evaluation

7

Center (WTEC) Inc., Baltimore, Maryland, December 2004.

Report of the NSF sponsored workshop.

[5] “National ecological observatory network (NEON).”

http://www.neoninc.org, November 2006.

[6] S. A. Isard and S. H. Gage, Flow of Life in the Atmosphere:

An airscape approach to understanding invasive organisms.

East Lansing, Michigan, USA: Michigan State University

Press, 2001.

[7] E. P. Kasten and P. K. McKinley, “MESO: Supporting online

decision making in autonomic computing systems,” IEEE

Transactions on Knowledge and Data Engineering (TKDE),

vol. 19, no. 4, pp. 485–499, 2007.

[8] E. P. Kasten, P. K. McKinley, and S. H. Gage, “Auto-

mated ensemble extraction and analysis of acoustic data

streams,” Tech. Rep. MSU-CSE-06-40, Department of Com-

puter Science and Engineering, Michigan State University,

East Lansing, Michigan, USA, December 2006. Available at

http://www.cse.msu.edu/∼mckinley/acoustics.pdf.

[9] W. H. Thorpe, “The learning of song patterns by birds,

with especial reference to the song of the chaffinch, Fingilla

coelebs,” Ibis: The international journal of avian science,

vol. 100, pp. 535–570, 1958.

[10] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic repre-

sentation of time series with implications for streaming algo-

rithms,” in Proceedings of the 8th ACM SIGMOD Workshop

on Research Issues in Data Mining and Knowledge Discov-

ery, (San Diego, California, USA), June 2003.

[11] B.-K. Yi, , and C. Faloutsos, “Fast time sequence indexing

for arbitrary Lp norms,” in Proceedings of the 26th Interna-

tional Conference on Very Large Databases, (Cairo, Egypt),

September 2000.

[12] N. Kumar, N. Lolla, E. Keogh, S. Lonardi, and C. A.

Ratanamahatana, “Time-series bitmaps: A practical visual-

ization tool for working with large time series databases,”

in Proceedings of SIAM International Conference on Data

Mining (SDM’05), (Newport Beach, California, USA),

pp. 531–535, April 2005.

[13] J. Lin, E. Keogh, S. Lonardi, and P. Patel, “Finding motifs

in time series,” in Proceedings of the 2nd Workshop on Tem-

poral Data Mining, at the 8th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, (Ed-

monton, Alberta, Canada), July 2002.

[14] E. Keogh, J. Lin, and A. Fu, “HOT SAX: Finding the most

unusual time series subsequence,” in Proceedings of the

5th IEEE International Conference on Data Mining (ICDM

2005), (Houston, Texas, USA), pp. 226–233, November

2005.

[15] S. Murthy, S. Kasif, and S. Salzberg, “A system for induction

of oblique decision trees,” Journal of Artificial Intelligence

Research (JAIR), vol. 2, pp. 1–32, 1994.

[16] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data

Mining. Boston, Massachusetts, USA: Pearson Education,

Incorporated, 2006.

[17] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom,

“Models and issues in data stream systems,” in Proceedings

of the 21st ACM Symposium on Principles of Database Sys-

tems (PODS), (Madison, Wisconsin, USA), June 2002.

[18] R. Avnur and J. M. Hellerstein, “Eddies: Continuously adap-

tive query processing,” in Proceedings of the ACM SIGMOD

International Conference on Management of Data, (Dallas,

Texas, USA), May 2000.

[19] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.

Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,

S. Madden, V. Raman, F. Reiss, and M. A. Shah, “Tele-

graphCQ: Continuous dataflow processing for an uncertain

world,” in Proceedings of the First Biennial Conference on

Innovative Data Systems Research (CIDR), (Asilomar, Cali-

fornia, USA), January 2003.

[20] A. P. Black, J. Huang, R. Koster, J. Walpole, and C. Pu, “In-

fopipes: An abstraction for multimedia streaming,” Multi-

media Systems (special issue on Multimedia Middleware),

vol. 8, no. 5, pp. 406–419, 2002.

[21] L. Girod, K. Jamieson, Y. Mei, R. Newton, S. Rost, A. Thi-

agarajan, H. Balakrishnan, and S. Madden, “The case for

a signal-oriented data stream management system,” in Pro-

ceedings of the Third Biennial Conference on Innovative

Data Systems Research (CIDR), (Pacific Grove, California,

USA), January 2007.

[22] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack,

C. Convey, S. Lee, M. Stonebraker, , N. Tatbul, and

S. Zdonik, “Aurora: A new model and architecture for data

stream management,” VLDB Journal, vol. 12, pp. 120–139,

August 2003.

[23] S. Zdonik, U. Çetintemel, M. Stonebraker, M. Balazin-

ska, M. Cherniack, and H. Balakrishnan, “The Aurora and

Medusa projects,” IEEE Data Engineering Bulletin, vol. 26,

March 2003.

[24] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. S. Maskey,

A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik,

“The design of the Borealis stream processing engine,” in

Proceedings of the Second Biennial Conference on Innova-

tive Data Systems Research (CIDR), (Pacific Grove, Califor-

nia, USA), January 2005.

[25] X. Fu, W. Shi, A. Akkerman, and V. Karamcheti, “CANS:

Composable, adaptive network services infrastructure,” in

The 3rd USENIX Symposium on Internet Technologies

and Systems (USITS), (San Francisco, California, USA),

pp. 135–146, March 2001.

[26] B.-K. Yi, H. Jagadish, and C. Faloutsos, “Efficient retrieval

of similar time sequences under time warping,” in Proceed-

ings of the IEEE International Conference on Data Engi-

neering, (Orlando, Florida, USA), pp. 201–208, February

1998.

8

