IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 4, APRIL 2007

485

MESO: Supporting Online Decision Making in

Autonomic Computing Systems

Eric P. Kasten, Member, IEEE, and Philip K. McKinley, Member, IEEE

Abstract—Autonomic computing systems must be able to detect and respond to errant behavior or changing conditions with little or no
human intervention. Clearly, decision making is a critical issue in such systems, which must learn how and when to invoke corrective
actions based on past experience. This paper describes the design, implementation, and evaluation of MESO, a pattern classifier
designed to support online, incremental learning and decision making in autonomic systems. A novel feature of MESO is its use of
small agglomerative clusters, called sensitivity spheres, that aggregate similar training samples. Sensitivity spheres are partitioned into
sets during the construction of a memory-efficient hierarchical data structure. This structure facilitates data compression, which is
important to many autonomic systems. Results are presented demonstrating that MESO achieves high accuracy while enabling rapid
incremental training and classification. A case study is described in which MESO enables a mobile computing application to learn, by
imitation, user preferences for balancing wireless network packet loss and bandwidth consumption. Once trained, the application can
autonomously adjust error control parameters as needed while the user roams about a wireless cell.

Index Terms—Autonomic computing, adaptive software, pattern classification, decision making, imitative learning, machine learning,
mobile computing, perceptual memory, reinforcement learning.

<+

INTRODUCTION

INCREASINGLY, software needs to adapt to dynamic external
conditions involving hardware components, network
connections, and changes in the surrounding physical
environment [1], [2], [3]. For example, to meet the needs
of mobile users, software in handheld, portable, and
wearable devices must balance several conflicting and
possibly crosscutting concerns, including quality-of-service,
security, energy consumption, and user preferences. Appli-
cations that monitor the environment using sensors must
interpret the knowledge gleaned from those observations
such that current and future requirements can be met.
Autonomic computing [4] refers to systems capable of
addressing such situations through self-management and
self-healing, with only high-level human guidance.

In recent years, numerous advances have been made in
software mechanisms to support dynamic adaptation and
autonomic computing; a recent survey can be found in [1].
However, new approaches to decision making are also
needed to enable software to capture the relative impor-
tance of different inputs when confronting a dynamic
physical world. For systems to learn from past experience
and remember effective responses to the sensed environ-
ment, they must be able to filter an enormous number of
inputs that may affect the decision. Moreover, many
systems must make decisions in real time to prevent
damage or loss of service. We argue that perceptual memory,
a type of long-term memory for remembering external

e The authors are with the Department of Computer Science and
Engineering, Michigan State University, 3115 Engineering Building,
East Lansing, MI 48824. E-mail: {kasten, mckinley)@cse.msu.edu.

Manuscript received 7 Oct. 2005; revised 23 June 2006, accepted 25 Sept.
2006; published online 19 Jan. 2007.

For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0467-1005.
Digital Object Identifier no. 10.1109/TKDE.2007.1000.

1041-4347/07/$25.00 © 2007 IEEE

stimulus patterns [5], may offer a useful model for an
important component of decision making in context-aware,
adaptive software. The ability to remember complex, high-
dimensional patterns that occur as a product of interaction
between application users and the environment, and to
quickly recall associated actions, can support timely,
autonomous system response and even discovery of new
or improved algorithms [6].

This paper presents MESO,' a perceptual memory
system designed to support online, incremental learning,
and decision making in autonomic systems. A novel feature
of MESO is its use of small agglomerative clusters, called
sensitivity spheres, that aggregate similar training patterns.
Sensitivity spheres are partitioned into sets during the
construction of a memory-efficient hierarchical data struc-
ture. This structure enables the implementation of a
content-addressable perceptual memory system: instead of
indexing by an integer value, the memory system is
presented with a pattern similar to the one to retrieve from
storage. Moreover, the use of sensitivity spheres facilitates a
high rate of data compression, which enables MESO to
execute effectively in resource-constrained environments.
Additional benefits of MESO include: incremental training,
fast reorganization, high accuracy, and lack of dependence
on a priori knowledge of adaptive actions. Each of these
benefits is important to online decision making.

After describing the design and operation of MESO, we
demonstrate its accuracy and performance by evaluating it
strictly as a pattern classifier. In these experiments, cross-
validation experiments are used to determine accuracy
using standard data sets. The performance of MESO, in
terms of accuracy and execution time, compares favorably
to that of other classifiers across a wide variety of data sets.

1. The term MESOQ refers to the tree algorithm used by the system (Multi-
Element Self-Organizing tree).

Published by the IEEE Computer Society

486 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 4, APRIL 2007

Next, we describe how MESO enables software decision
making in an audio streaming application that can imita-
tively learn [7], [8], [9] how to adapt to changing network
conditions, such as loss rate, packet delay, and bandwidth
availability. This application, called XNetApp, learns how
to adapt through interaction with a user. Specifically, we
trained the XNetApp how to respond to dynamic error
conditions on a wireless network, and then tested its
decision making ability by letting it execute autonomously.
This proof-of-concept study demonstrates that perceptual
memory systems, such as MESO, can play an effective role
in the software decision-making process.

In [9], we described results of a preliminary study of
MESO. This paper expands on that report in several ways.
First, we describe related work on the application of
machine learning to software decision making. Second, we
provide a more comprehensive presentation of constituent
algorithms and data structures used in MESO, as well as
experimental results that help to elucidate issues related to
the size and growth of sensitivity spheres. Third, all
baseline and comparative experimental results presented
in the paper were produced using a new version of MESO,
written in C++ instead of Java. Fourth, the experimental
results are expanded to included training and testing times
and a comparison with a sequential-search version of
MESO. Fifth, in addition to the seven data sets used in
[9], we also evaluate MESO on the MNIST data set. Sixth, in
addition to comparing MESO to three flavors of the IND
[10] classifier, we also compare MESO directly against HDR
[11], a classifier that uses incremental training. The results
show that MESO can be trained and tested significantly
faster than HDR. Moreover, MESO accuracy surpasses that
of incremental HDR while comparing favorably with batch-
trained HDR.

The remainder of this paper is organized as follows:
Section 2 discusses background and related work. Section 3
describes MESO'’s clustering algorithm and the role of
sensitivity spheres; three data compression methods that
leverage MESO’s internal structure are also introduced.
Section 4 presents experimental results that assess MESO
performance (accuracy, compression rate, and execution
time) on eight standard data sets. MESO performance is
also compared directly with that of other classifiers.
Section 5 describes the mobile computing case study using
XNetApp. Finally, Section 6 presents our conclusions and
discusses future directions.

2 BACKGROUND AND RELATED WORK

In this work, we explore clustering and pattern classifica-
tion methods for associating adaptive responses with
observed or sensed data. The embodiment of this
approach is a clustering algorithm [12], [13] that produces
a model of environmental stimuli. As shown in Fig. 1, two
basic functions compose the operation of MESO: training
and festing. During training, patterns are stored in
perceptual memory, enabling the construction of an
internal model of the training data. Each training sample
is a pair (z;,v;), where z; is a vector of continuous, binary,
or nominal values, and y; is an application specific data
structure containing metainformation associated with each

Train Test

| Meta HEEEESINNRNEN HERRES BERREN

[i.. BeRa:tammuus]
[L.. BeReztaauuss]
Meta eiiesssstsses
[L.. mnasztununns]

L}

Fig. 1. High-level view of MESO.

pattern. Metainformation can be any data that is important
to a decision-making task, such as the codification of an
adaptive action to be taken in response to certain
environmental stimuli. MESO can be used strictly as a
pattern classifier [12] if an a priori categorization is known
during training. In this case, the metainformation need
only comprise of a label assigning each pattern to a
specific real-world category. However, where many
classifiers leverage categorical labels to better classify
training samples, MESO does not rely on labels or any
other type of metainformation, but instead incrementally
clusters the training patterns in a label independent
fashion.

Like many clustering and classifier designs, MESO
organizes training patterns in a hierarchical data structure
for efficient retrieval. Once MESO has been trained, the
system can be queried using a pattern without metainfor-
mation. MESO tests the new pattern and returns either the
metainformation associated with the most similar training
pattern or a set of similar training patterns and their
metainformation. In some domains, it may not be possible
to collect a representative set of training samples a priori, so
incremental learning is required. This process uses an
estimation function f;, which is a function of the first
i samples, and which is constructed incrementally using the
previous estimator f;_; and the current pattern (x;,y;).

Research in clustering and pattern classification is a very
active field of study [14], [15], [16], [17]. Recently, a number
of projects have addressed clustering and classification of
large data sets, a characteristic of decision making for
autonomic software. Tantrum et al. [18] consider model-
based refractionation for clustering large data sets. Yu et al.
[19] use an hierarchical approach to clustering using
support vector machines (SVMs). Kalton et al. [20] address
the growing need for clustering by constructing a frame-
work that supports many clustering algorithms. Methods
for online clustering and classification have also been
explored [21], [22], [23]. Like MESO, methods that address
large data sets and online learning may provide a basis for a
perceptual memory system. However, to our knowledge,
MESO is the first to consider the combined tradeoffs of data
intensity, time sensitivity, and accuracy with respect to
memory systems within a decision-making environment.

KASTEN AND MCKINLEY: MESO: SUPPORTING ONLINE DECISION MAKING IN AUTONOMIC COMPUTING SYSTEMS 487

Some of the concepts used in MESO are reminiscent of
other clustering systems and, in some cases, a complemen-
tary relationship exists. For example, like MESO, M-tree [24]
partitions data objects (patterns) based on relative distance.
However, MESO uses an incremental heuristic to grow
sensitivity spheres rather than splitting fixed sized nodes
during tree construction. Moreover, rather than select
database routing objects for directing the organization of
the tree, MESO introduces the concept of pivot spheres for
this purpose. BIRCH [25] also uses hierarchical clustering
while iteratively constructing an optimal representation
under current memory constraints. Where BIRCH mainly
addresses data clustering when memory is limited, MESO
attempts to balance accuracy, compression, and training
and testing times to support online decision making. MESO
may benefit from BIRCH'’s concept of clustering features as
an efficient representation of training patterns, while
BIRCH may benefit from MESO’s approach to growing
sensitivity spheres. Data Bubbles [26] focuses on producing
a compressed data set representation while avoiding
different types of cluster distortion. Its data analysis and
representation techniques might enable alternative ap-
proaches to representing and compressing sensitivity
sphere data in MESO, whereas MESO’s growth and
organization of sensitivity spheres could provide an
efficient data structure for application of these techniques.

Other works have explored the use of statistical methods
and pattern classification and clustering techniques in
learning systems, including those that enable a system to
learn online through interaction with the physical world.
For example, Hwang and Weng [11] developed hierarchical
discriminant regression (HDR) and applied it successfully
as part of the developmental learning process in humanoid
robots. Notably, HDR provides an hierarchical discrimina-
tion of features that helps limit the impact of high-
dimensional feature vectors, enhancing the ability of the
system to correctly classify patterns. However, as will be
shown in Section 4, HDR requires significantly more time
for training and testing than does MESO. In addition,
Ivanov and Blumberg [27] developed the layered brain
architecture, which was used for the construction of
synthetic creatures, such as a “digital dog.” That project
used clustering and classification methods to construct
perceptual models as part of the dog’s developmental
learning system. A notable aspect of the layered brain
project is the use of compression to limit the effect of large
training sets on memory consumption and processing
power requirements. MESO also uses compression, but
applies it to individual sensitivity spheres in order to
maintain high accuracy in the face of data loss.

Our case study with MESO and XNetApp complements
other studies of imitative learning, where a learner acquires
skills by observing and remembering the behavior of a
teacher. For example, Amit and Matari¢ [8] used hidden
Markov models (HMMs) to enable humanoid robots to
learn aerobic-style movements. The ability of the system to
reconstruct motion sequences is encouraging, demonstrat-
ing the potential importance of imitative learning. Jebar and
Pentland [7] conducted imitative learning experiments
using a wearable computer system that included a camera

initialize cluster centers, §
input pattern xz(t)
find nearest center, e.g., w;
if d({L’i,’LUj) < d

update cluster center
else

create new center wj = z(t)
next pattern
end

Fig. 2. Leader-follower algorithm (adapted from Duda and Hart [12]).

and a microphone. A human subject was observed by the
system during interactions with other people. The observed
training data was used to train an HMM. Later, the system
was allowed to respond autonomously when presented
with visual and audio stimuli, demonstrating a limited
ability to reproduce correct responses. However, since
learning by observing real human behavior is very complex,
even limited recognizable response is significant and
promising. The development of MESO complements these
approaches by providing a fast and memory-efficient
means to classify internal state under external conditions.

Finally, researchers have applied data clustering and
classification methods to other aspects of autonomic
computing, such as fault detection and optimization of
algorithms. Fox et al. [28] used data clustering to correlate
system faults with failing software components. Once the
failing components were identified, they could be selec-
tively restarted, avoiding a complete system reboot while
shortening mean time to recovery. Geurtz et al. [29]
considered several machine learning algorithms for identi-
fying if a system is running atop a wired or wireless
network. This method enables the autonomous adaptation
of the TCP protocol to address dynamic network condi-
tions. It is anticipated that similar systems can use MESO
for automated fault detection or optimization when the
software is faced with the uncertainty found in dynamic
environments.

3 MESO DESIGN AND OPERATION

If categorical labels are known during training, MESO can
function as a pattern classifier that incrementally classifies
environmental stimuli or other data while accommodating
very large data sets. Prior to developing MESO, we
conducted experiments using the HDR classifier [11] for
this purpose. The insights gained from those experiments
led to our design of MESO. MESQO incrementally constructs
a model of training data using a data clustering approach
whereby small clusters of patterns, called sensitivity spheres,
are grown incrementally. These sensitivity spheres are
organized in an hierarchical data structure, enabling rapid
training and testing, as well as significant data compression,
while maintaining high accuracy. In this section, the details
of MESO’s core algorithm and data structures are dis-
cussed. MESO is based on the well-known leader-follower
algorithm [30], an online, incremental technique for
clustering a data set. The basic operation of the leader-
follower algorithm is shown in Fig. 2. A training pattern

488 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 4, APRIL 2007

20 T T T

20

Fig. 3. Sensitivity spheres for three 2D Gaussian clusters. Circles
represent the boundaries of the spheres as determined by the current 6.
Each sphere contains one or more training patterns, and each training
pattern is labeled as belonging to one of three categories (circle, square,
or triangle).

within distance 6 of an existing cluster center is assigned to
that cluster; otherwise, a new cluster is created.

Traditionally, the value of ¢ is a constant initialized
based on a user’s understanding or experience with the data
set at hand. However, this approach makes it difficult to
generalize the leader-follower algorithm to arbitrary data
sets. We address this issue in MESO by computing the value
of § incrementally and by organizing the resulting clusters
using a novel hierarchical data structure, as described
below.

3.1 Sensitivity Spheres

In adaptive software, training patterns comprise observa-
tions related to quality of service or environmental context,
such as network bandwidth or physical location. The
quantity of training patterns collected while a system
executes may be very large, requiring more memory and
processing resources as new patterns are added to the
classifier. Unlike the traditional leader-follower algorithm,
in MESO, the value of § changes dynamically, defining the
sensitivity spheres, which are small agglomerative clusters
of similar training patterns. Effectively, the value of 6
represents the sensitivity of the algorithm to the distance
between training patterns. Fig. 3 shows an example of
sensitivity spheres for a 2D data set which comprises three
clusters. A sphere’s center is calculated as the mean of all
patterns that have been added to that sphere. The ¢ is a
ceiling value for determining if a training pattern should be
added to a sphere, or if creation of a new sphere is required.
As defined by the ¢ value, sphere boundaries may overlap,
however, each training pattern is assigned to only one
sphere, whose center is closest to the pattern.

3.2 MESO Tree Structure

As with many classifiers, MESO uses a tree structure to
organize training patterns for efficient retrieval. However,
the MESO tree, depicted in Fig. 4, is novel in that its
organization is based on sensitivity spheres. A MESO tree is

eeoe@oeee
eoeos BE 0=

Fig. 4. MESO tree organization. The rectangles are partitions and the
shaded spheres are partition pivots. Partitions are split successively until
a leaf is formed where a partition contains only one sphere.

built starting with a root node, which comprises the set of
all sensitivity spheres. The root node is then split into
subsets of similar spheres which produces child nodes.
Each child node is further split into subsets until each child
contains only one sphere. Many clustering algorithms
construct a tree by agglomerating individual patterns into
large clusters near the root of the tree, and then splitting
these clusters at greater tree depths. Reorganizing such a
tree requires processing of the training patterns directly. In
contrast, MESO’s consolidation of similar patterns into
sensitivity spheres enables construction of a tree using only
spheres, rather than individual patterns. Moreover, a MESO
tree can be reorganized using only existing sensitivity
spheres and, hence, more rapidly than approaches that
require direct manipulation of patterns.

The set of sensitivity spheres for a data set is partitioned
into subsets of similar spheres during the construction of a
MESO tree. Each node of the tree contains one such subset,
called a partition. Fig. 5 shows the algorithm for building a
MESO tree from existing sensitivity spheres. The parameters
for this algorithm include: g, the number of children per tree
node; p, a partition pivot sphere; parent, the parent node for a
set of children; root, the root node of the tree; and part, the
partition associated with a parent node. The algorithm is
recursive, starting at the root of the tree with a partition (part)

begin initialize ¢q,p = nil, root, part
splitpartition (g, p, root, part)

procedure splitpartition (q, p, parent, part)
if part has a cardinality > 1
select ¢q pivots from part including
Pr P1--Pg
create ¢ subpartions, part;..part,
foreach s; in part do
find the nearest p; pivot and add
8; to part;
done
foreach pj,part; pair do
create a child node
add p; to child
add child to parent
splitpartition (g, pj, child, part;)
done
endif

Fig. 5. Building a MESO tree from sensitivity spheres.

KASTEN AND MCKINLEY: MESO: SUPPORTING ONLINE DECISION MAKING IN AUTONOMIC COMPUTING SYSTEMS

80 —
raining .
70 L esting o |

7 8 9 10

489

80 ——
raining .

0l Rl 2]

60

50 -
40

Seconds

30 -
20
o—9

o > w—
7 7 A T A & &

0
01 02 03 04 05 06 07 08 09
c

(b)

s—=

Fig. 6. Training and testing time for the letter data set (see Section 4.1). (a) Using fixed é. (b) Using dynamic 6.

comprising all spheres in the tree. Each call to splitpartition
divides part into ¢ smaller partitions and assigns these
partitions as children of the parent node. The processes
terminates when a partition contains only one sphere. When
a partition is divided, the first sphere in each of the
g segments is identified as a pivot, which is used subse-
quently in assigning other spheres to that partition.
Specifically, for a sphere to be added to a partition requires
that the sphere be nearer to that partition’s pivot than to the
pivot of any other child node. Intuitively, this algorithm can
be viewed as a ¢-way heap sort that organizes sensitivity
spheres according to their similarity. The parameter ¢ can be
set to any integer value > 2 and, in our experience, has
limited impact on the accuracy of retrieving patterns from
MESO during testing. In the experiments described in
Sections 4 and 5, we set ¢ = 8.

As a result of this process, each nonleaf node in a MESO
tree has one or more children, each comprises a subset of
the parent’s sensitivity spheres. Smaller partitions provide
finer discrimination and better classification of test patterns.
Moreover, the partitioning of sensitivity spheres produces a
hierarchical model of the training data. That is, each
partition is an internal representation of a subset of the
training data that is produced by collecting those spheres
that are most similar to a pivot sphere. At deeper tree levels,
parent partitions are split, producing smaller partitions of
greater similarity.

To classify a test pattern, the pattern is compared with a
pivot, starting at the root, and following one or more paths
of greatest similarity. At a leaf node, a label is returned
indicating the category to which the test pattern most likely
belongs. The MESO tree can be constructed incrementally,
enabling MESO to be trained and tested during simulta-
neous interaction with users or other system components.

3.3 Sensitivity Sphere Size

An important consideration in building an effective MESO
tree is the appropriate value of § to use in defining
sensitivity spheres. Our experiments show that training
and testing time are influenced by the choice of é. For
example, Fig. 6a shows results for the letter data set
(discussed further in Section 4.1), with ¢ fixed at various
values. If ¢ is too small, training time increases dramatically.
If 6 is too large, testing time increases (more evident for

larger data sets). Moreover, data set compression requires a
proper value of é to balance the tradeoff between compres-
sion rate and accuracy.

To address this issue, the value of ¢ is adjusted
incrementally as MESO is trained. The 6 growth function
balances sphere creation rate and sphere size. Fig. 7 shows
the algorithm for construction of sensitivity spheres from
training patterns. This algorithm begins by initializing the
sensitivity 6, the first sensitivity sphere mean vector (u,),
and the first sensitivity sphere (s;) to 0, z;, and empty,
respectively. Then, for each pattern (x;), the closest sphere
mean vector is located. If the distance between z; and the
nearest sphere mean is less than or equal to ¢, then z; is
added to the sphere and the sphere mean recalculated. If
the distance between the closest sphere mean and z; is
greater than §, then the 6 is grown, then a new sphere is
created for z; and an associated mean vector is initialized.

A good grows function needs to balance sphere creation
with sphere growth. Rapid growth early in the training
process can produce few spheres with very large 6s, creating
a coarse-grained, inefficient representation. However, slow
growth produces a large number of very small spheres, and
the resulting tree is expensive to search. In the MESO
implementation reported here, the 6 growth function is:

(d-8)5f
1+In(d—6+1)*

grows =

where d is the distance between the new pattern and the

nearest sensitivity sphere. The ¢ factor scales the result

d

begin initialize d=0,u; =z1, 5
foreach z; sample do
find the nearest wu; for z;
if distance from u; to z; <= 6
add z; to s
recompute u; using samples in s§;
else
let 6 = grows
create new s;41
add z; to Siy1
let uj1 = zj
endif
done

Fig. 7. Sensitivity sphere creation algorithm.

490 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 4, APRIL 2007

TABLE 1
Comparison of Six Different Activation Functions Using ¢ = 0.6 for the Letter Data Set (See Section 4.1)

Data set @) (b) © @ © ®
oy | S IR ERENN IR
§+E | e=06 : (| logo(%) | 1 (2
Letter
Accuracy% 90.6+0.3% | 88.1+0.2% | 87.9+0.2% | 88.7+0.3% | 87.9+0.2% | 88.7+0.2%
Training (s) 1.84+0.0 2.0+0.0 1.84+0.0 2.2+0.0 1.7+0.0 2.5+0.0
Testing (s) 0.240.0 0.2+0.0 0.240.0 0.3£0.0 0.2+0.0 0.3£0.0
Spheres 570422 65912 563+3 80318 51043 95344
MNIST
Accuracy% 94.3+0.1% | 94.840.1% | 94.6+0.1% | 95.0+0.1% | 94.5+0.1% | 95.2+0.1%
Training (s) 70.9+1.1 109.9+1.6 | 92.1+£3.2 | 125.9+14 | 86.7£1.2 | 175.0+1.6
Testing (s) 6.7+0.2 9.3+0.3 8.6£0.7 10.2+0.1 7.940.2 11.3+0.3
Spheres 6279+11 969616 705048 10300£19 | 630042 1375812

relative to the difference between the current § and d.
Intuitively, the denominator of grows limits the growth rate
based on how far the current § is from d. If d is close to §, then
6 will grow to be nearly equal to d. However, if d is much
larger than ¢, then the increase will be only a small fraction of
d — 6. As such, 6 growth is discouraged in the face of outliers,
new experience, and widely dispersed patterns. Hence,
when a new training pattern is distant from existing spheres,
a new sphere is likely to be created for it.

The activation function, f, needs to balance the creation
of new spheres with sphere growth. Table 1 depicts six
candidate activation functions, where r = ;%222 and cis a
configuration parameter in the range [0, 1.0]. Increasing ¢
moves the center of the activation function to the right. The
statistics shown were generated using cross-validation
(discussed further in Section 4.1) in conjunction with the
letter and MNIST data sets. As shown, the functions in
Tables 1b, 1d, and 1f produce a significantly larger number
of sensitivity spheres than the other functions. However, a
large sphere count inhibits compression (discussed further
in Section 3.4) and exhibits higher training and testing
times. The functions in Tables 1c and le produce fewer
spheres, but exhibit somewhat lower accuracies or longer
training and testing times than the function in Table 1la.
Overall, the function in Table la shows the best balance
between accuracy and training and testing times while
producing a sufficiently small number of spheres to enable
high compression. Intuitively, the function in Table 1la
inhibits sensitivity sphere growth when the number of
spheres is small compared to the number of patterns, but
encourages rapid sphere growth when the number of
spheres is large. The remaining experiments presented in
this paper use the activation function in Table 1a, with
parameter c set to 0.6.

Fig. 6b plots the measured training and testing time for
the letter data set against the configuration parameter, c.
The grows function balances sphere production with sphere

growth, producing good spheres for a wide range of values
for c¢. Only for very large values of ¢ is growth inhibited
sufficiently to significantly impact training time. The grows
function promotes the production of trees that are compar-
able with good choices for fixed ¢ values.

3.4 Compression

Online learning is a data intensive process, and adaptive
systems often must continue to function for long periods of
time while responding to the sensed environment. The
enormous amount of input data consumes substantial
processing and storage resources, potentially inhibiting
timely responses or impacting application performance.
MESO uses lossy compression to limit the consumption of
memory and processor cycles. Compression is applied on a
per sensitivity sphere basis. That is, rather than trying to
compress the entire data set using a global criterion, the
patterns in each sensitivity sphere are compressed inde-
pendent of other spheres. Since information about each
sphere is retained, the effect of information loss on classifier
accuracy is minimized. We implemented three types of
compression, the evaluation of which is discussed in
Section 4.2.

Means compression reduces the set of patterns in each
sensitivity sphere to the mean pattern vector for each label.
This is the most aggressive and simple of the compression
methods. Moreover, the computational requirements are
quite low.

Spherical compression is a type of boundary compression
[27] that treats patterns on the boundaries between spheres
as most important to the classification of test patterns. For
each sphere, the feature values are converted to spherical
coordinates. Along a given vector from the sphere center,
only those patterns farthest from the sphere center are kept.

Orthogonal compression removes all the patterns that are
not used for constructing an orthogonal representation of a
sphere’s patterns. The idea is to keep only those patterns that
are most important as determined by their orthogonality.
Patterns that represent parallel vectors in m-dimensional
space are removed.

KASTEN AND MCKINLEY: MESO: SUPPORTING ONLINE DECISION MAKING IN AUTONOMIC COMPUTING SYSTEMS 491

100

[}
(=]
T

(=2}
(=}
T

N
S

Accuracy% / Compression%

[%3
[=]
T

Accuracy .
o)) Compression o
2 3 4 5 6 7 8 9 10
Delta

(@)

o o o o o o oV
<
S 80 1
R
2
E g
g 0
(=]
&)
=
S
% 40 +
g
=
3 20
2 L J
Accuracy °
0) _Compression o

01 02 03 04 05 06 07 08 09
c

(b)

Fig. 8. Effect of means compression on training and testing times for the letter data set, using fixed and variable é. (a) Accuracy and compression,

fixed 4. (b) Accuracy and compression, variable é.

Using compression requires some consideration of ¢
growth. As shown in Fig. 8a, accuracy decreases with
higher compression rates. Moreover, the compression rate is
directly influenced by the value of ¢. That is, if the
sensitivity sphere ¢ is very large and few spheres are
produced, compression is high and too much information
will be lost during compression. However, if the 6 is very
small, very little compression is possible.

To avoid growing overly large spheres in the face of
compression, we modified the activation function f to be:

1 tanh(#&w -3)
f=35+ 5 :

where v is the compression rate, defined as the fraction of
patterns removed during compression. Under high com-
pression rates, using v instead of ¢ as the center point of the
activation function causes the Sigmoid curve to move to the
right, further inhibiting sphere growth. Fig. 8b plots the
accuracy and compression rate for experiments on the letter
data using means compression and the modified activation
function. Accuracy and compression rate remain high for a
wide range of ¢ values. Only very large values of ¢ cause a
drop in compression rate, along with a slight increase in
accuracy.

3.5 Complexity

Table 2 shows the space and time complexities for training
MESO and several well-known clustering algorithms [31].
In this table, n is the number of patterns, k is the number of
clusters, and [is the number of iterations to convergence.

TABLE 2
Space and Time Complexities for MESO and Several Other
Clustering Algorithms [31]

[Algorithm | Time [Space |
MESO O(nlog k) | O(n)
leader O(kn) O(k)
k-means O(nkl) O(k)
[SODATA O(nkl) | O(k)
shortest spanning path O(n?) O(n)
single-link O(n?logn) | O(n?)
complete-link O(nZ%logn) | O(n?)

Without compression, MESO has a worst-case space
complexity of O(n), comparable to the shortest spanning
path algorithm. MESO’s memory consumption can be
significantly reduced with compression, as shown in the
next section.

Intuitively, time complexity for training can be consid-
ered in terms of locating the sensitivity sphere nearest to a
new pattern and adding the pattern to that sphere. If a
sufficiently close sphere cannot be found, a new sphere is
created. Locating the nearest sphere is an O(log, k) opera-
tion. This search must be completed once for each of
n patterns. Each pattern must also be added to a sensitivity
sphere, and k sensitivity spheres must be created and added
to the MESO tree. Assuming an appropriate value of § and a
data set of significant size, this process yields a complexity
of O(nlog, k) + O(n) + O(k) 4+ O(klog, k) which reduces to
O(nlog, k).

The search complexity for classifying a test pattern using
MESO is O(log, k) + O(5) for a balanced tree, where ¢ is the
maximum number of children per node, 5 is the average
number patterns agglomerated by a sensitivity sphere, and
k represents the number of sensitivity spheres produced.
The 5 component represents the number of operations
required to assign a category label once the most similar
sensitivity sphere has been located. Thus, the worst-case
search complexity occurs when only one cluster is formed
and the search algorithm degenerates into a linear search of
O(n). Conversely, a best-case search complexity of O(log, 1)
occurs when one sensitivity sphere is formed for each
training pattern.

4 MESO ASSESSMENT

In this section, we evaluate MESO as a pattern classifier on
several standard data sets in cross-validation experiments.
First, we describe the data sets used in the experiments and
the experimental procedures. Next, we present baseline
results that evaluate the accuracy of MESO, the training and
testing time needed, and the effects of the three compres-
sion methods described earlier. Finally, to benchmark
performance, we compare MESO performance to that of
other classifiers, specifically, three versions of IND [10],

492 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 4, APRIL 2007

TABLE 3
Data Set Characteristics

[Data Set | Patterns | Features | Labels |
Iris 150 4 3
ATT Faces 360 10,304 40
Multiple Feature 2,000 649 10
Mushroom 8,124 22 2
Japanese Vowel 9,859 12 9
Letter 20,000 16 26
MNIST 70,000 784 10
Cover Type 581,012 54 7

which uses batch training, and HDR [11], which can be
configured to use either batch or incremental training.

4.1 Data Sets and Experimental Method

Table 3 lists the eight data sets used to assess MESO. The
number of patterns and features per pattern are shown for
each data set, along with the number of distinct labels (or
classes) of patterns. Six of the data sets were retrieved from
the UCI [32] and KDD [33] machine learning repositories.
The exceptions are AT&T faces [34], acquired from AT&T
Laboratories Cambridge, and MNIST [35], downloaded
from http://yann.lecun.com/exdb/mnist/.

These sets represent a wide variety of data types and
characteristics. The iris data set [36] comprises just
150 patterns from three classes, each class representing a
type of iris plant. The classification task is to correctly
identify the type of iris by the length and width of the
flower’s sepals and petals. The AT&T faces data set [34] is
also relatively small, and comprises 360 images of 40 dif-
ferent human subjects. However, the number of features
(each of 10,304 image pixels) is very large. The classification
task is to identify the subject of the image from the pixel
values.

Three data sets involve numbers and letters. Patterns in
the multiple feature data set [37], [38] consist of features
that describe 10 handwritten numerals extracted from
Dutch utility maps. Examples include morphological
features, Fourier coefficients, and pixel averages. The
classification task is to identify a digit from these features.
The MNIST data set [35] also comprises features of
handwritten digits, and the task is to identify the digit.
However, the features are the 784 integer pixel values, and
the number of patterns is much larger than in the multiple
feature data set. The letter data set [39] contains 20,000 pat-
terns, each comprises 16 integer measurements of features
such as width, height, or mean pixel values. The classifica-
tion task is to classify each pattern as one of the 26 letters in
the Latin alphabet.

The mushroom [40] and Japanese vowel [41] data sets are
similar in size and feature count, but very different in
content. Each pattern in the mushroom data set comprises
22 nominal values (alphabetic characters) that represent
mushroom features such as cap shape or gill attachment.
Since MESO does not address nonnumeric attributes
explicitly, each alphabetic character is converted to its
numeric ASCII value. The binary label associated with a
pattern indicates whether the mushroom is poisonous or
edible. The Japanese vowel data set comprises 270 time

series blocks, where each block consists of a set of records.
Each record contains 12 continuous measurements of
utterances from nine male speakers. The 9,859 patterns are
produced by treating each record as an independent pattern
and randomizing the data set. As such, no understanding of
utterance order is retained. The classification task is to
identify the speaker of each utterance independent of its
position in a time series.

Finally, the cover type data set [42] comprises 581,012 pat-
terns for determining forest cover type. Each pattern has
54 values, including: 10 continuous values, indicating
features such as elevation and slope; four binary wilderness
areas; and 40 binary soil types. The classification task is to
identify which of seven forest cover types (such as spruce/
fir or aspen) corresponds to a test pattern.

We tested MESO using cross-validation experiments as
described by Murthy et al. [14]. Each experiment is
conducted as follows:

1. Randomly divide the training data into k equal-sized
partitions.

2. For each partition, train MESO using all the data
outside of the selected partition. Test MESO using
the data in the selected partition.

3. Calculate the classification accuracy by dividing the
sum of all correct classifications by the total number
of patterns tested.

4. Repeat the preceding steps n times, and calculate the
mean and standard deviation for the n iterations.

In our tests, we set both k£ and n equal to 10. Thus, for
each mean and standard deviation calculated, MESO is
trained and tested 100 times.

4.2 Baseline Experiments

Table 4 presents results of cross-validation experiments
using MESO to classify patterns in the eight data sets.
Means and standard deviations are provided. Before
discussing the results, let us briefly comment on the
distance metric used. Since the use of sensitivity spheres
effectively divides the larger classification problem into a
set of smaller tasks, it turns out that a relatively simple
distance metric, such as Euclidean distance, can be used to
achieve high accuracy. Although we experimented with
more complicated distance metrics (e.g.,, Mahalanobis),
none achieved higher accuracy than Euclidean distance,
which also exhibited shorter times for training and testing.
Therefore, all experiments described here and in later
sections use Euclidean distance.

Let us focus first on the results for experiments that do
not use compression. MESO exhibits an accuracy of more
than 90 percent on all the data sets, using either sequential
or tree-based search. MESO'’s accuracy on the AT&T Faces
and MNIST data sets, which contain high-dimensional,
image data, indicates that MESO may be effective in
computer vision applications. Compared to a sequential
search of sensitivity spheres, use of the MESO tree
structure reduces training and testing times in most cases.
The improvement is particularly notable for large data
sets. For MNIST, training time is improved by a factor of
18 and testing time by a factor of 20. For Cover Type,
training time is improved by a factor of 18 and testing

KASTEN AND MCKINLEY: MESO: SUPPORTING ONLINE DECISION MAKING IN AUTONOMIC COMPUTING SYSTEMS 493

TABLE 4
MESO Baseline Results Comparing a Sequential Search to MESO Tree Search, with and without Compression
Data set Uncompressed Compressed (Tree)
(Sequential) | (Tree) Means | Spherical | Orthogonal
Iris
Accuracy% 95.5+0.0% 96.1+1.4% | 95.840.8% | 95.1+1.3% | 95.942.1%
Compression% 0.0% 0.0% 1.86+0.2% | 0.0+£0.0% 1.940.0%
Training (s) 0.04+0.0 0.03+0.0 0.03+0.0 0.03+0.0 0.03+0.0
Testing (s) 0.04+0.0 0.040.0 0.040.0 0.040.0 0.040.0
ATT Faces
Accuracy% 97.3+0.0% 94.0+1.4% | 93.5+£1.6% | 94.5+1.2% | 93.7+1.4%
Compression% 0.0% 0.0% 0.04+0.0% 0.0+0.0% 0.04+0.0%
Training (s) 1.85+0.0 1.87+0.0 1.90+0.0 1.86+0.0 2.04+0.0
Testing (s) 0.39+0.0 0.08+0.0 0.08+0.0 0.08+0.0 0.08+0.0
Mult. Feature
Accuracy% 95.0+0.0% 94.1+0.5% | 94.240.4% | 94.1+0.5% | 94.44+0.5%
Compression% 0.0% 0.0% 0.34+0.0% 0.0+0.0% 0.3+0.0%
Training (s) 4.58+0.0 1.6940.0 1.734+0.0 1.81+0.0 1.784+0.0
Testing (s) 0.99+0.0 0.07+0.0 0.07+0.0 0.07+0.0 0.07+0.0
Mushroom
Accuracy% 100.0+0.0% | 100.040.0% | 100.0+0.0% | 99.84+0.0% | 99.940.0%
Compression% 0.0% 0.0% 90.2+0.0% | 73.9+0.3% | 90.2+0.0%
Training (s) 1.2440.1 0.62+0.0 0.67+0.0 0.81+0.0 0.77+0.0
Testing (s) 0.14+0.0 0.05+0.0 0.05+0.0 0.05+0.0 0.05+0.0
Japanese Vowel
Accuracy% 93.1+0.2% 91.5+0.3% | 81.3+0.4% | 90.24+0.3% | 81.3+0.2%
Compression% 0.0% 0.0% 93.74+0.0% | 28.3+0.2% | 93.8+0.0%
Training (s) 0.30+0.0 0.39+0.1 0.41+0.0 0.89+0.0 0.49+0.0
Testing (s) 0.04+0.0 0.05+0.0 0.03+0.0 0.05+0.0 0.03+0.0
Letter
Accuracy% 93.1+0.2% 90.6+0.3% | 87.840.3% | 90.1+£0.2% | 87.84+0.3%
Compression% 0.0% 0.0% 88.64+0.2% | 23.6+0.2% | 88.3+0.2%
Training (s) 1.83+0.2 1.2740.0 1.4240.0 2.284+0.0 1.77+£0.0
Testing (s) 0.21+0.0 0.16+0.0 0.12+0.0 0.17+0.0 0.12+0.0
MNIST
Accuracy% 96.5+0.0% 94.3+0.1% | 93.3+0.1% | 94.3+0.1% | 93.3+0.1%
Compression% 0.0% 0.0% 86.5+0.0% | 0.0+0.0% | 86.54+0.0%
Training (s) 1307.22+£9.7 70.94+£1.1 73.35+1.3 | 179.53+£5.4 | 78.65+1.4
Testing (s) 157.324+1.3 6.73+0.2 6.291+0.2 6.81+0.2 6.30+0.2
Cover Type
Accuracy% 96.3+0.0% 96.1+0.0% | 81.64+0.1% | 95.24+0.0% | 81.64+0.0%
Compression% 0.0% 0.0% 98.5+0.0% | 50.2+0.0% | 98.5+0.0%
Training (s) 1974.76+11.8 | 109.97+0.4 | 114.54+0.7 | 232.64+2.5 | 127.97+0.9
Testing (s) 227.08+1.4 18.7440.1 11.1440.1 17.29+.03 11.5640.1

All tests were started with 6 = 0.0 and ¢ = 0.66 and executed on a 2GHz Intel Xenon processor with 1.5 GB RAM running Linux. All experiments were

conducted using cross-validation.

time by a factor of 12. Although using the hierarchical tree
structure reduces the accuracy in most cases, typically
between 0 percent to 4 percent, this tradeoff may be
considered acceptable for applications where decision
making is time sensitive.

Next, let us consider the results for experiments using
data compression. The three methods (means, spherical,
and orthogonal) had only minimal effect on the three
smallest data sets, where sphere growth is inhibited early
in the training process, producing spheres with few
samples. However, the memory usage for these data sets
is low. On the other hand, both the means and orthogonal
methods were very effective in reducing the memory
requirements for the five larger data sets (at least an
85 percent reduction in all cases), while retaining high
accuracy. We attribute this behavior to the application of
compression to individual sensitivity spheres, enabling the
capture of the n-dimensional structure of the training data
while limiting information loss. Spherical compression
was the least effective in reducing memory usage; the

translation of training patterns from Euclidean to sphe-
rical coordinates also adds to the cost of training.

Fig. 9 shows how MESO’s accuracy and training times
scale with the size of the training data set. To create these
plots, each data set was first randomized and then divided
into 75 percent training and 25 percent testing data. The
training data was further divided into 100 segments. MESO
was trained and then tested 100 times. During the first
iteration, only the first segment was used for training; at
each subsequent iteration, an additional segment was
added to the training set. This process was repeated
10 times for each data set and the mean values calculated.
The mean values are plotted in Fig. 9. As shown, MESO’s
accuracy increases rapidly during early training, and then
slows but continues to improve as training continues.
Training time increases linearly with respect to the size of
the training data set.

4.3 Comparison with Other Classifiers

In this section, we compare MESO performance with that of
the IND [10] and HDR [11], [43] classifiers. We note that

494 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 4, APRIL 2007

120

Data Set Data Set
Letter o MNIST o
Japanese Vowel © 100 r Cover Type 2
15+ Multiple Feature L
% "~ | Mushroom L) 2

~ 3 3 80
8 2 2
: o Q
g £ £ 60}
5 B0 o0
3 40 Data Set g £
< Letter E 8 § a0t

MNIST o = 05 =

20 | Cover Type 4 -

Japanese Vowel ° 20

Multiple Feature °

Mushroom ®

0 \ 0 \ \ . . 0 \ \ \ \
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Training data fraction (%) Training data fraction (%) Training data fraction (%)

()

(b) (©)

Fig. 9. Scalability with respect to training set size. For all data sets, typical standard deviations are less than 10 percent with respect to the
corresponding mean accuracies and training times. (a) Accuracy. (b) Training time (small sets). (c) Training time (large sets).

MESQO is trained incrementally, whereas IND can be trained
only in batch mode. Classifiers that are batch trained
typically have an advantage over those that are trained
incrementally: processing the entire training data set when
building a classifier may produce a better data model than
that produced by incremental training. Therefore, batch
training often yields higher accuracy and faster testing.

Table 5 compares MESO results (repeated from Table 4)
with those measured for the IND and HDR classifiers. The
implementation of IND, written in C, was provided by
Buntine, formerly with NASA’s Bayesian Learning Group
(http:/ /ic.arc.nasa.gov/ic/projects/bayes-group/ind). The
HDR implementation, which uses both C and C++, was
provided by Weng of the Embodied Intelligence Laboratory
at Michigan State University (http://www.cse.msu.edu/
ei). MESO is implemented in C++. IND can be used to build
a decision tree style classifier using several different
algorithms. We tested three different algorithms: CART
[44], ID3 [45], and Bayesian [46]. We conducted two sets of
experiments with HDR, one using batch training and the
other using incremental training.

Let us first compare the MESO results with those of IND.
As shown, despite its use of incremental training, MESO
accuracy compares favorably with that of all three IND
variations, exhibiting higher accuracy in almost all cases.
The NC designation indicates that IND could not complete
a particular test. Specifically, for the AT&T Faces data set,
insufficient memory prevented IND from completing the
data set encoding process, which must be done before IND
is trained. Somewhat surprisingly, MESO exhibits high
accuracy for the Mushroom data set. This data set consists
entirely of nominal values, which have no comparative
numeric value since they simply indicate characteristics,
such as cap shape, by name. IND, like many decision tree
algorithms [47], addresses the issue by designating some
features as nominal. MESO does not explicitly address
nominal values, but still accurately classifies these patterns.

Next, let us consider the training and testing times of
MESO relative to those of IND. Although MESO exhibits
slower testing times than IND for most data sets, in many
cases, MESO spends less time training, which would help to
reduce the overhead in acquiring and assimilating new
experiences in an online decision maker. Moreover, incre-
mental training as provided by MESO is important to

autonomic systems that need to address dynamic environ-
ments and changing needs of users.

Finally, let us compare MESO with HDR, which was
designed primarily for computer vision tasks. Batch-trained
HDR demonstrates slightly higher accuracy than MESO,
attributable to HDR’s use of discriminant analysis to help
select salient features from the training patterns. However,
when HDR is trained incrementally, MESO achieves higher
accuracy on all eight data sets, including the two image data
sets, AT&T Faces and MNIST. Moreover, the training and
testing times of MESO are significantly lower than those of
HDR in almost all cases. In several cases, the advantage is
more than an order of magnitude. Collectively, these results
indicate that MESO may be effective in a variety of
autonomic applications requiring online decision making.

5 CaAsE StuDpY: ADAPTIVE ERROR CONTROL

To explore the use of MESO to support learning in adaptive
software, we conducted a case study involving adaptive
error control. Specifically, we used MESO to implement the
decision maker in an audio streaming network application,
called XNetApp, that adapts to changes in packet loss rate
in a wireless network. XNetApp uses forward error
correction (FEC), whereby redundant information is in-
serted into the data stream, enabling a receiver to correct
some losses without contacting the sender for retransmis-
sion. In our experimental scenario, depicted in Fig. 10, a
stationary workstation transmits an audio data stream to a
wireless access point, which forwards the stream to a
mobile receiver over the wireless network. As a user roams
about the wireless cell and encounters different wireless
channel conditions, XNetApp should dynamically adjust
the level of FEC in order to maintain a high-quality audio
stream. However, XNetApp should also attempt to do so
efficiently, that is, it should not consume channel band-
width unnecessarily.

5.1 Block-Erasure Codes

The FEC method used in this study addresses erasures of
packets resulting from CRC-based detection of errors at the
data link layer. As shown in Fig. 11, an (n, k) block erasure
code [48] converts k source packets into n encoded packets,

KASTEN AND MCKINLEY: MESO: SUPPORTING ONLINE DECISION MAKING IN AUTONOMIC COMPUTING SYSTEMS

TABLE 5
MESO Accuracy and Training and Test Times When Compared with IND and HDR
MESO IND (Batch) HDR

Data set (Incremental) CART | ID3 | Bayesian (Batch) | (Incremental)
Iris

Accuracy % 96.1 £1.4% | 92.8 £0.3% | 93.5 £0.7% | 94.2 £1.1% | 96.4 £1.4% | 89.5 £3.6%

Training (s) 0.040.0 0.01+0.6 0.040.0 0.01+0.0 0.040.0 0.040.0

Testing (s) 0.040.0 0.040.0 0.040.0 0.040.0 0.040.0 0.040.0
ATT Faces

Accuracy % 94.0 +1.4% 94.8 +£1.7% | 93.1 £1.9%

Training (s) 1.9+0.0 NC NC NC 9.0+0.2 1.8+0.1

Testing (s) 0.14+0.0 0.340.0 0.34+0.0
Mult. Feature

Accuracy % 94.1 £0.5% | 93.1 £0.6% | 94.2 £0.2% | 94.4 £1.1% | 95.2 £0.4% | 88.8 £0.5%

Training (s) 1.7+0.0 22.2+0.3 8.6+0.0 19.240.2 2.140.0 2.54+0.0

Testing (s) 0.07+0.0 0.040.0 0.04+0.0 0.040.0 2.14+0.0 0.54+0.0
Mushroom

Accuracy % 100.0 £0.0% | 99.9 +0.0% |100.0 +0.0% |100.0 +0.0% | 100.0 +0.0% | 64.6 +0.6%

Training (s) 0.640.0 0.740.0 0.040.0 0.040.0 4.5+0.1 4.240.1

Testing (s) 0.04+0.0 0.040.0 0.0+0.0 0.04+0.0 1.440.0 1.14+0.0
Japanese Vowel

Accuracy % 91.54+0.3% | 82.3 £0.3% | 84.2 £0.3% | 84.7 £0.3% | 96.3 £0.2% (84.9% +0.8%

Training (s) 0.440.0 82.3+0.3 2.620.0 7.04+0.6 0.940.0 5.04+0.2

Testing (s) 0.14+0.0 0.040.0 0.04+0.0 0.04+0.0 0.940.0 1.34+0.0
Letter

Accuracy % 90.6 +0.3% | 84.4 +0.3% | 87.9 +0.1% | 88.6 £0.2% | 93.4 +0.1% | 86.2 +1.0%

Training (s) 1.34+0.0 5.440.1 0.940.0 3.0£0.0 5.040.1 30.84+0.5

Testing (s) 0.240.0 0.040.0 0.0+0.0 0.14+0.0 0.64+0.0 7.01+0.1
MNIST

Accuracy % 94.3 +0.1% | 88.3 +£0.1% | 88.1 £0.1% | 89.0 £0.1% | 97.4 £0.0% | 91.2 +0.8%

Training (s) 709+1.1 |1225.2+48.2| 211.9+3.8 | 565.14+42.4 |5887.0£439.0 |3997.9+252.4

Testing (s) 6.7+0.2 12.7+£1.2 10.9+0.1 10.9+0.1 |6007.74+158.2| 898.1455.8
Cover Type

Accuracy % 96.1 £0.0% | 93.9 £0.9% | 95.2 £0.2% | 94.4 +0.3% 96.6% T 71.2% T

Training (s) 110.0+0.4 | 414.4+3.0 51.54+0.2 118.9+5.1 41164.0 52755.3

Testing (s) 18.740.1 0.54+0.0 0.64+0.2 1.04+0.3 15148.0 11600.0

495

All tests began with 6 = 0.0 and ¢ = 0.6. Executed on a 2GHz Intel Xenon processor with 1.5GB RAM running Linux. All experiments conducted
using cross-validation. 1 The Cover Type data set was not completed for either batch or incremental executions of HDR. Neither was completed due

to long execution time requirements.

such that any % of the n encoded packets can be used to
reconstruct the k source packets. These codes have gained
popularity recently due to an efficient implementation by
Rizzo [49]. Each set of n encoded packets is referred to as a
group. Here, we use only systematic (n,k) codes, meaning
that the first k packets in a group are identical to the original
k data packets. The remaining n — k packets are referred to
as parity packets.

In earlier studies, our group has investigated several
ways that mobile systems can adapt to changing conditions
on wireless networks. Examples include adaptable proxies
for video streaming [50], adaptive FEC for reliable multi-
casting [51], several adaptive audio streaming protocols
[52], [53], and the design of middleware components whose

Access
Point

Receiver

Sender

Fig. 10. Physical network configuration used in XNetApp case study.

structure and behavior can be modified at run time in
response to dynamic conditions [54]. However, in those
approaches, the rules used to govern adaptation were
developed in an ad hoc manner as a result of experiments.
Here, we investigate whether the system itself can learn how
to adapt to dynamic conditions.

5.2 Features

In the experiments, 56 environmental features are sensed
directly, or calculated from other features, and used as
input to the decision-making process. The features are
listed in Table 6. The first four features are instantaneous

ENCODED RECEIVED
DATA DATA
>
SOURCE 4 X > RECONSTRUCTED
DATA 3 X > DATA
o 5 =]
L X ¢ m
a > Q
Q X O
8] ro| O
z — m
| :_—§ B
——8
v > O

Fig. 11. Operation of FEC based on block erasure codes.

496 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 4, APRIL 2007

TABLE 6
Features Used for Training and Testing the XNetApp
[# Feature Description
14 Instantaneous measurements: bandwidth,

perceived packet delay, perceived loss
and real loss.

5-32 || Time-sampled measurements: median,
average, average deviation, standard de-
viation, skewness, kurtosis and deriva-
tive.

33-56 || Fourier spectrum of the time-sampled

measurements: median, average, average
deviation, standard deviation, skewness
and kurtosis.

measurements. Perceived features represent the applica-
tion’s viewpoint. That is, perceived packet loss represents
the packet loss as observed by the application after error
correction, while real packet loss is the number of packets
actually dropped by the network prior to error correction.
The second group of 28 features is produced by applying
seven different metrics (mean, standard deviation, etc.) to
each of the four directly measured features as sampled
over time. The last group of 24 features is produced by
calculating six Fourier spectrums for each of the four
directly measured features.

The decision maker’s goal is to consider these 56 features
and autonomously adapt the system to recover from
network packet loss while conserving bandwidth. The
adaptation is realized by having the receiving node request
the sender to modify the (n,k) settings and change the
packet size. The decision maker needs to increase the level
of error correction when packet loss rates are high and
reduce the level of error correction when packet loss rates
are low.

Audio is sampled at 8 KHz using 16-bit samples. Each
packet includes a 12-byte application level header contain-
ing a sequence number, stream offset, and data length. So,
for example, a 32-byte packet contains the header and
10 samples, equivalent to 1.25 milliseconds of audio. We
experimented with larger packet sizes and other
nk combinations, but the above values provided sufficient
diversity in MESO-based learning and autonomous deci-
sion making.

5.3 Imitative Learning

In our experiments, the XNetApp decision maker uses MESO
to “remember” user preferences for balancing packet loss
with bandwidth consumption. The decision maker gains this
knowledge through imitative learning. A user shows the
XNetApp how to adapt to a rising loss rate by selecting an
(n, k) setting with greater redundancy. If the new setting
reduces the perceived loss rate to an acceptable level, the user
reinforces the new configuration (e.g., by pressing a
particular key), and the XNetApp uses MESO to associate
the sensed environment and selected (n,k) configuration.
Later, when operating autonomously, the decision maker
senses current environmental conditions and calculates
time-sampled and Fourier features, constructing a pattern.
Using this pattern, the XNetApp queries MESO for a system
configuration that most likely addresses current conditions.

Then, the decision maker emulates the user’s actions and
adapts the XNetApp, changing the configuration to match
that returned from MESO.

5.4 Results

We report results of experiments designed to evaluate the
ability of the XNetApp to autonomously balance error
control effectiveness and bandwidth consumption. The
transmitting station was a 1.5GHz AMD Athlon work-
station, and the mobile receiver was a a 500MHz X20 IBM
Thinkpad notebook computer. Both systems run the Linux
operating system. We report results for two sets of
experiments.

The first set of experiments was conducted in a
controlled setting, specifically using a wired network and
artificially generated packet losses. These experiments were
designed to verify that XNetApp could learn to respond
accurately to a simple loss model. We trained and tested
XNetApp using TCP over a 100Mb wired network, thereby
avoiding the effects of spurious errors and overruns of UDP
buffers. Packets were dropped at the sender according to a
probabilistic loss model, which varied the loss rate from 0.0
to 0.3 in steps of size 0.05, at 15 second intervals. After
starting the receiver and sender, the system was trained by
having a user select (n,k) values and packet sizes in an
attempt to minimize the perceived loss and bandwidth
consumption. When a combination satisfying user prefer-
ences is found, the XNetApp (receiver) is notified that the
current combination is “good” (by pressing the “g” key).
Good FEC/packet size combinations and system measure-
ments were then used to train MESO. Training concluded
in one hour with MESO storing 34,982 training patterns
associated with six FEC code combinations: 32(10,2),
32(8,2), 64(1,1), 64(42), 64(62), and 64(82). In testing,
XNetApp collected system measurements and used them
to query MESO for the FEC code/packet size combination
associated with the most similar set of measurements
observed during training.

Figs. 12a and 12b, respectively, show the (artificially
generated) network packet loss and the perceived packet
loss during the testing phase of the experiment. All
changes to error correction are made autonomously by
the XNetApp decision maker. Fig. 12c plots the redun-
dancy-ratio defined as <";k) , reflecting the changes in FEC
(n,k) values corresponding to the loss rates shown in
Fig. 12a. For comparison, Fig. 12c also depicts a plot of the
optimum redundancy ratio given the FEC codes specified
during training. The optimum ratio is computed using the
FEC code that provides redundancy greater than or equal
to the real loss rate. From these figures, it can be seen that
the XNetApp significantly reduces packet loss as perceived
by the application by automatically adapting FEC para-
meters and packet size. Notably, in order to conserve
bandwidth, the XNetApp did not simply choose a high
(n, k) ratio, but changed parameters to correspond with the
changing loss rate.

The second set of experiments were conducted using real
packet losses on an 11Mbps 802.11b wireless network. The
experimental configuration is shown in Fig. 10. These tests
required XNetApp to autonomously balance real packet
loss and bandwidth consumption as a user roamed about a

KASTEN AND MCKINLEY: MESO: SUPPORTING ONLINE DECISION MAKING IN AUTONOMIC COMPUTING SYSTEMS

497

1

08 : 08 t 0.8
8
g

2 06 2 06 >.0.6
£ £ g
7 2 g
2 2 g

S04l S04l €04 |

3
~

02 02 | 0.2

0 0 . . . - ‘ 0 — ' — '
0 50 100 150 200 250 300 0 50 100 150 200 250 300 50 100 150 200 250 300

Testing time (seconds)

(@)

Testing time (seconds)

Testing time (seconds)

(b) (c)

Fig. 12. XNetApp results for artificially generated packet losses. (a) Network packet loss. (b) Perceived packet loss. (c) Redundancy ratio.

1 T T T T T T T 1

L T optimum ——
0.8 0.8
0.8
2
206 206 5
5] 51 0.6
17} v Q
5 K -
0.4 04 | 04 -
k=l
51
4
0.2 02 0.2
0

0
0 100 200 300 400 500 600 700 800
Testing time (seconds)

(@)

0)
0 100 200 300 400 500 600 700 800
Testing time (seconds)

100 200 300 400 500 600 700 800
Testing time (seconds)

(b) ©

Fig. 13. XNetApp results for real packet losses on a wireless network. (a) Network packet loss. (b) Perceived packet loss. (c) Redundancy ratio.

wireless cell. The XNetApp was trained by a user for one
hour using an artificial loss rate that varied from 0.0 to 0.6 in
steps of size 0.05 at 15 second intervals. Such a model
allowed the XNetApp to be trained for the higher loss rates
often found at the periphery of a real wireless cell. Training
generated 32,709 training patterns in 10 classes that were
used to train MESO for autonomous testing atop a wireless
network. Each class “label” is a FEC configuration specify-
ing a (n,k) pair and a packet size. The 10 classes (packet
size/FEC code combinations) were:

32(10,2) 32(12,2) 32(14,2) 32(16,2) 32(18,2)
32(8,2) 64(1,1) 64(4,2) 64(6,2) 64(8,2).

In the testing phase, we turned off simulation and enabled
the XNetApp to autonomously balance real packet loss and
bandwidth consumption. The sender was located on a
stationary workstation connected to a wireless access point
through a 100Mb hub. A wireless PCMCIA card provided
network access to the notebook computer. The UDP/IP
multicast protocol was used for transmission of the data
stream. Data was collected as a user roamed about a wireless
cell carrying a notebook running an XNetApp receiver.
Again, all changes to error correction were made autono-
mously by the XNetApp decision maker. Fig. 13 shows the
the results using the same format as in the earlier tests.
Under real conditions, XNetApp is able to significantly
reduce loss rate as perceived by the application, while
conserving bandwidth under good channel conditions.

Table 7 shows results from running cross-validation tests
using the data acquired during XNetApp training. This data
was produced during training for autonomous XNetApp
operation on the real wireless network. This table shows
accuracy, with and without compression, helping quantify
how well the XNetApp can be expected to imitate a user. The
system achieved 94 percent accuracy without compression,
and maintained an accuracy level above 87 percent even
when data was compressed by more than 90 percent. We
regard these results as promising and justifying further
study of MESO for online decision making in autonomic
systems.

6 CoNcLUSIONS AND FUTURE DIRECTIONS

We have presented a perceptual memory approach, called
MESO, that uses pattern classification and clustering
techniques to support online decision making in autonomic
systems. We showed that, when used as a pattern classifier,
MESO can accurately and quickly classify patterns in
several standard data sets, comparing favorably to existing
classifiers. We also designed an adaptable framework and
implemented an application, XNetApp, that imitatively
learns how to make decisions through interaction with a
user. XNetApp was successfully trained, using imitative
learning, to change the level of error correction while
minimizing bandwidth consumption in response to chan-
ging network conditions. We postulate that software, such
as the XNetApp, that can be trained to make good decisions
may simplify the integration of software into new or

498 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 4, APRIL 2007
TABLE 7
XNetApp Results with and without Compression
[Data set | Uncompressed [Means | Spherical | Orthogonal |
XNetApp
Accuracy% 94.1%+0.2% | 87.7%=+0.2% | 92.4%+0.7% | 87.3%+0.4%
Compression% 0.0% 91.8%+0.1% | 5.8%+0.2% | 91.8%+0.14%
Training (s) 33.096+2.123 | 18.059+0.3 74.7705+£6.5 | 19.35940.582
Testing (s) 1.1274+0.016 | 1.02440.013 | 1.119£0.014 | 1.02440.010

Data set size is 32,709. Executed on a 2GHz Intel Xenon processor with 1.5GB RAM running Linux. All experiments conducted using cross-

validation.

pervasive computing environments. Moreover, a user can
teach an application how to meet his or her needs in the
face of mobility and novel environments.

In future work, we plan to address the issue of novel
experiences with respect to perceptual memory and
decision making. Online decision makers may be faced
with the uncertainty present in dynamic environments, as
new situations are encountered. When a novel pattern of
sensed values or a new user action is first encountered, it
may initially be considered as an outlier. However, this
pattern might also reflect a change in environmental
conditions or user preference. We plan to explore the
relationship between outliers and novelty in dynamic
environments and how novel experience affects the
decision making process. One possible approach is to
enable MESO to “forget” rarely used patterns or sensitivity
spheres, helping both to eliminate the impact of outliers and
outdated sensor data on classifier accuracy and to reduce
memory and processor consumption during extended
online data acquisition. We also intend to explore cases
where MESO might overfit the training data, producing a
decision boundary that may not generalize well to making
decisions in real-world environments. In such situations, if
the decision maker can recognize when there is significant
uncertainty associated with a “remembered” solution, it
may choose to invoke a planning strategy rather than rely
on what was remembered.

Further information. A number of related papers and
technical reports of the Software Engineering and Net-
work Systems Laboratory can be found at http://
www.cse.msu.edu/sens.

ACKNOWLEDGMENTS

The authors would like to thank Juyang Weng, Xiao Huang,
and Dave Knoester at Michigan State University for their
contributions to this work. This work was supported in part
by the US Department of Navy, Office of Naval Research
under Grant No. N00014-01-1-0744, and in part by US
National Science Foundation grants EIA-0000433, EIA-
0130724, and ITR-0313142.

REFERENCES

[1] P.K. McKinley, SM. Sadjadi, E.P. Kasten, and B.H. Cheng,
“Composing Adaptive Software,” Computer, vol. 37, pp. 56-64,
July 2004.

[2] Proc. Second Int’l Conf. Autonomic Computing (ICAC), June 2005.

[3] Proc. Distributed Auto-Adaptive and Reconfigurable Systems Workshop
(DARES), held in conjunction with the 24th Int’l Conf. Distributed
Computing Systems (ICDCS), Mar. 2004.

4
(5]

(o]

(7]

(8]

)

(10]

(1]

[12]
(13]

(14]

[15]

[10]

(17]

(18]

(19]

(20]

(21]

[22]

[23]

(24]

J.O. Kephart and D.M. Chess, “The Vision of Autonomic
Computing,” Computer, pp. 41-50, Jan. 2003.

J.M. Fuster, Memory in the Cerebral Cortex: An Empirical Approach to
Neural Networks in the Human and Nonhuman Primate. The MIT
Press, 1995.

S. Franklin, “Perceptual Memory and Learning: Recognizing,
Categorizing and Relating,” Proc. Developmental Robotics AAAI
Spring Symp., Mar. 2005.

T. Jebara and A. Pentland, “Statistical Imitative Learning from
Perceptual Data,” Proc. Second Int’l Conf. Development and Learning,
pp- 191-196, June 2002.

R. Amit and M. Matari¢, “Learning Movement Sequences from
Demonstration,” Proc. Second Int’l Conf. Development and Learning,
pp- 165-171, June 2002.

E.P. Kasten and P.K. McKinley, “MESO: Perceptual Memory to
Support Online Learning in Adaptive Software,” Proc. Third Int’l
Conf. Development and Learning (ICDL '04), Oct. 2004.

W. Buntine, “Tree Classification Software,” Proc. Third Nat'l
Technology Transfer Conf. and Exposition, Dec. 1992.

W.-S. Hwang and J. Weng, “Hierarchical Discriminant Regres-
sion,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22,
no. 11, Nov. 2000.

R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, second
ed. John Wiley and Sons, 2001.

P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data
Mining. Pearson Education, Inc., 2006.

S. Murthy, S. Kasif, and S. Salzberg, “A System for Induction of
Oblique Decision Trees,” J. Artificial Intelligence Research (JAIR),
vol. 2, pp. 1-32, 1994.

C.C. Aggarwal, C. Procopiuc, J.L. Wolf, P.S. Yu, and].S. Park,
“Fast Algorithms for Projected Clustering,” Proc. ACM SIGMOD
Conf. Management of Data, pp. 61-72, June 1999.

S. Kumar, J. Ghosh, and M.M. Crawford, “Hierarchical Fusion of
Multiple Classifiers for Hyperspectral Data Analysis,” Pattern
Analysis and Applications, vol. 5, pp. 210-220, 2002.

J. Tantrum, A. Murua, and W. Stuetzle, “Assessment and Pruning
of Hierarchical Model Based Clustering,” Proc. Ninth ACM
SIGKDD Int’'l Conf. Knowledge Discovery and Data Mining, Aug.
2003.

J. Tantrum, A. Murua, and W. Stuetzle, “Hierarchical Model-
Based Clustering of Large Datasets through Fractionation and
Refractionation,” Proc. Eighth ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining, pp. 183-190, July 2002.

H. Yu, J. Yang, and J. Han, “Classifying Large Data Sets Using
SVMs with Hierarchical Clusters,” Proc. Ninth ACM SIGKDD Int’l
Conf. Knowledge Discovery and Data Mining, pp. 306-315, Aug. 2003.
A. Kalton, P. Langley, K. Wagstaff, and J. Yoo, “Generalized
Clustering, Supervised Learning, and Data Assignment,” Proc.
Seventh ACM SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining, pp. 299-304, Aug. 2001.

J. Kivinen, A.J. Smola, and R.C. Williamson, “Online Learning
with Kernels,” Proc. Advances in Neural Information Processing
Systems (NIPS), 2002.

K. Crammer, J. Kandola, and Y. Singer, “Online Classification on a
Budget,” Proc. Advances in Neural Information Processing Systems
(NIPS), 2003.

C. Gupta and R. Grossman, “Genlc: A Single Pass Generalized
Incremental Algorithm for Clustering,” Proc. SIAM Int’l Conf. Data
Mining, Apr. 2004.

P. Ciaccia, M. Patella, and P. Zezula, “M-Tree: An Efficient Access
Method for Similarity Search in Metric Spaces,” Proc. 23rd Int’l
Conf. Very Large Data Bases (VLDB '97), pp. 426-435, Aug. 1997.

KASTEN AND MCKINLEY: MESO: SUPPORTING ONLINE DECISION MAKING IN AUTONOMIC COMPUTING SYSTEMS

(23]

[26]

[27]

(28]

[29]

(30]
(31]
(32]

(33]

(34]

(35]

[36]

[37]

(38]

(39]

(40]

[41]

[42]

(43]

[44]
[43]

[40]

[47]

(48]

[49]

[50]

T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient
Data Clustering Method for Very Large Databases,” Proc. 1996
ACM SIGMOD Int’l Conf. Management of Data, pp. 103-104, June
1996.

M.M. Breunig, H.-P. Kriegal, P. Kroger, and]. Sander, “Data
Bubbles: Quality Preserving Performance Boosting for Hierarch-
ical Clustering,” Proc. 2001 ACM SIGMOD Int’l Conf. Management
of Data, May 2001.

Y.A. Ivanov and B.M. Blumberg, “Developmental Learning of
Memory-Based Perceptual Models,” Proc. Second Int’l Conf.
Development and Learning, pp. 165-171, June 2002.

M.Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer,
“Pinpoint: Problem Determination in Large, Dynamic, Internet
Services,” Proc. Int’l Conf. Dependable Systems and Networks (IPDS
Track), 2002.

P. Geurts, LE. Khayat, and G. Leduc, “A Machine Learning
Approach to Improve Congestion Control over Wireless Compu-
ter Networks,” Proc. Fourth IEEE Conf. Data Mining (ICDM '04),
pp- 383-386, Nov. 2004.

J.A. Hartigan, Clustering Algorithms. John Wiley and Sons, 1975.
AK. Jain, M\N. Murty, and PJ. Flynn, “Data Clustering: A
Review,” ACM Computer Surveys, vol. 31, pp. 264-323, Sept. 1999.
C.L. Blake and C.J. Merz, “UCI Repository of Machine Learning
Databases,” http://www.ics.uci.edu/~mlearn/MLRepository.
html, 1998.

S. Hettich and S.D. Bay, “UCI KDD Archive,” http://kdd.ics.
uci.edu, 1999.

F. Samaria and A. Harter, “Parameterisation of a Stochastic Model
for Human Face Identification,” Proc. Second IEEE Workshop
Applications of Computer Vision, Dec. 1994.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” Proc. IEEE, vol. 86,
Pp- 2278-2324, Nov. 1998.

R.A. Fisher, “The Use of Multiple Measurements in Taxonomic
Problems,” Annals of Eugenics, vol. 7, pp. 179-188, 1936.

M. van Breukelen, R.P.W. Duin, D.M.]. Tax, and J.E. den Hartog,
“Handwritten Digit Recognition by Combined Classifiers,”
Kybernetika, vol. 34, no. 4, pp. 381-386, 1998.

A K. Jain, RP.W. Duin, and J. Mao, “Statistical Pattern Recogni-
tion: A Review,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 22, no. 1, pp. 4-37, Jan. 2000.

P.W. Frey and D.J. Slate, “Letter Recognition Using Holland-Style
Adaptive Classifiers,” Machine Learning, vol. 6, Mar. 1991.

J.S. Schlimmer, “Concept Acquisition through Representational
Adjustment,” PhD thesis, Dept. of Information and Computer
Science, Univ. of California, Irvine, 1987.

M. Kudo, J. Toyama, and M. Shimbo, “Multidimensional Curve
Classification Using Passing-Through Regions,” Pattern Recogni-
tion Letters, vol. 20, pp. 1103-1111, 1999.

J.A. Blackard and D.]J. Dean, “Comparative Accuracies of Neural
Networks and Discriminant Analysis in Predicting Forest Cover
Types from Cartographic Variables,” Proc. Second Southern Forestry
GIS Conf., pp. 189-199, 1998.

J. Weng and W.-S. Hwang, “An Incremental Learning Algorithm
with Automatically Derived Discriminating Features,” Proc. Asian
Conf. Computer Vision, pp. 426-431, Jan. 2000.

L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone, Classifica-
tion and Regression Trees. Chapman and Hall, 1984.

J.R. Quinlan, “Induction of Decision Trees,” Machine Learning,
vol. 1, pp. 81-106, 1986.

W.L. Buntine, “Decision Tree Induction Systems: A Bayesian
Analysis,” Proc. Third Conf. Uncertainty in Artificial Intelligence,
pp- 109-128, July 1987.

S.K. Murthy, “Automatic Construction of Decision Trees from
Data: A Multi-Disciplinary Survey,” Data Mining and Knowledge
Discovery, vol. 2, no. 4, pp. 345-389, 1998.

AJ. McAuley, “Reliable Broadband Communications Using Burst
Erasure Correcting Code,” Proc. ACM SIGCOMM, pp. 287-306,
Sept. 1990.

L. Rizzo, “Effective Erasure Codes for Reliable Computer
Communication Protocols,” ACM Computer Comm. Rev., vol. 27,
pp- 24-36, Apr. 1997.

P. Ge and P.K. McKinley, “Leader-Driven Multicast for Video
Streaming on Wireless LANs,” Proc. IEEE Int’l Conf. Networking,
Aug. 2002.

(51]

[52]

(53]

[54]

499

P.K. McKinley, C. Tang, and A.P. Mani, “A Study of Adaptive
Forward Error Correction for Wireless Collaborative Computing,”
IEEE Trans. Parallel and Distributed Systems, Sept. 2002.

P.K. McKinley, U.I. Padmanabhan, N. Ancha, and S.M. Sadjadi,
“Composable Proxy Services to Support Collaboration on the
Mobile Internet,” IEEE Trans. Computers, special issue on wireless
Internet, pp. 713-726, June 2003.

Z. Zhou, P.K. McKinley, and S.M. Sadjadi, “On Quality-of-Service
and Energy Consumption Tradeoffs in fec-Enabled Audio
Streaming,” Proc. 12th IEEE Int'l Workshop Quality of Service
(IWQoS "04), June 2004.

S.M. Sadjadi, P.K. McKinely, and E.P. Kasten, “Architecture and
Operation of an Adaptable Communication Substrate,” Proc.
Ninth Int’l Workshop Future Trends of Distributed Computing Systems
(FTDCS "03), May 2003.

RS A

Eric P. Kasten received the BS degree in
mathematics and computer science from Central
Michigan University in 1989 and the MS degree
in computer science from Michigan State Uni-
versity in 1997. He is currently a PhD candidate
in the Department of Computer Science and
Engineering, and a software developer in the
National Superconducting Cyclotron Laboratory,
both at Michigan State University. His current
research interests include autonomic computing,

dynamic system adaptation, and data stream processing and mining in
support of ecosensing and adaptive mobile computing. He is a member
of the IEEE and the IEEE Computer Society.

Philip K. McKinley received the BS degree in
mathematics and computer science from lowa
State University in 1982, the MS degree in
computer science from Purdue University in
1983, and the PhD degree in computer science
from the University of lllinois at Urbana-Cham-
paign in 1989. Dr. McKinley is currently a
professor of computer science and engineering
at Michigan State University. He was previously
a member of technical staff at Bell Laboratories.

He has served as an associate editor for the /EEE Transactions on
Parallel and Distributed Systems and was cochair of the program
committee for the 2003 IEEE International Conference on Distributed
Computing Systems. His current research interests include self-adaptive
software, digital evolution, mobile computing, and group communication
protocols. He is a member of the IEEE and the IEEE Computer Society.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

