
Perimorph: Run-Time Composition and State Management for Adaptive
Systems ∗

E. P. Kasten and P. K. McKinley
Software Engineering and Network Systems Laboratory

Department of Computer Science and Engineering
Michigan State University

East Lansing, Michigan 48824
{kasten,mckinley}@cse.msu.edu

Abstract

This paper addresses a key issue that arises in run-time
recomposition of software: the transfer of nontransient state
between old components and their replacements. We focus
on the concept of collateral change, which refers to the set
of recomposition actions that must be applied atomically for
continued correct execution of the system. We describe Pe-
rimorph, a system that supports compositional adaptation
of both functional and nonfunctional concerns by explicitly
addressing collateral change. The operation of Perimorph
is demonstrated through the implementation and testing of a
2D/3D digital elevation mapping application that supports
recomposition and handoff among networked devices with
varying capabilities.

Keywords: adaptive middleware, component-based design, collat-
eral change, run-time composition, state management, composi-
tional adaptation, mobile computing

1. Introduction

Distributed applications are pervasive in today’s world.
In part, driven by the expansion of the Internet and the de-
sire for mobility, today’s computer users require quality-of-
service guarantees, security and flexibility from a multitude
of platforms. Moreover, changing requirements, combined
with a heterogeneous computing infrastructure and dynamic
wireless network conditions, demand that distributed soft-
ware be able to adapt to its environment.

∗ This work was supported in part by the U.S. Department of the Navy,
Office of Naval Research under Grant No. N00014-01-1-0744, and
in part by National Science Foundation grants CDA-9617310, NCR-
9706285, CCR-9912407, EIA-0000433, and EIA-0130724.

Adaptations may require recomposition of functional as-
pects, which realize the imperative behavior of an applica-
tion, and nonfunctional aspects, such as quality-of-service,
fault tolerance and security. Adapting functional aspects is
needed for upgrade of existing components or enhancement
and extension of the primary function of a system. Such
functional adaptation may correct problems or improve a
system’s ability to cope with decreasing network quality.
Equally, nonfunctional aspects may require adaptation, pos-
sibly augmenting security and fault tolerance concerns, in
response to a changing environment or application domain.

Two general approaches have been used to realize adap-
tive behavior in software. Transformational [18], or pa-
rameter, adaptation involves the modification of program
variables that determine program behavior. As noted by
Hiltunen and Schlichting [9], a prominent example of trans-
formational adaptation is the manner in which TCP ad-
justs its behavior, through the values of variables associ-
ated with window management and retransmission time-
outs, in response to perceived network congestion [10]. In
contrast, compositional adaptation [18] results in the ex-
change of algorithmic or structural parts of the system with
ones that improve a program’s fit to its current environment
[3,6,9,11,16,20]. Compositional adaptation can insert fault
tolerant components, such as forward error correction fil-
ters, in response to an unreliable or lossy wireless connec-
tion [11,16], or address nonfunctional concerns [5,19], such
as hardening a system’s resistance to attack under adverse
conditions [13].

A key issue that arises in compositional adaptation is
state management. Recomposition of algorithmic or struc-
tural components at run-time requires the transfer of non-
transient state between an old component and its replace-
ment. While the state capture problem has been addressed
in other contexts, such as checkpointing, process or thread
migration and mobile agents, the methods employed there
generally are not directly applicable because they either in-



cur too much overhead or do not support state transfer be-
tween different implementations of a component. Rather,
recomposition involves state transfer as it relates to collat-
eral change, which we define as the set of recompositions
that must be applied to an application atomically for contin-
ued correct execution.

The main contribution of this paper is to propose a soft-
ware design approach that facilitates compositional adap-
tation by explicitly addressing collateral change. This ap-
proach is intended to complement related research projects,
such as those implementing dynamic component reconfigu-
ration [4,11,13,14,16] or dynamic aspect weaving [2,5,17,
19], by providing mechanisms that support state manage-
ment during run-time recomposition. We have used this ap-
proach to construct a prototype system called Perimorph1,
which supports run-time recomposition of both functional
and nonfunctional aspects of the system.

The remainder of this paper is organized as follows. Sec-
tion 2 defines and discusses compositional adaptation with
respect to a simple example, the “adaptive queue.” Section 3
provides details on the design and implementation of the Pe-
rimorph system. Section 4 describes an adaptive digital ele-
vation mapping application, designed using Perimorph, that
supports recomposition and application handoff among net-
worked devices with varying capabilities. Section 5 presents
our conclusions and discusses future directions.

2. Compositional Adaptation

Compositional adaptation [5, 9, 11, 16, 20], or the ability
to affect and modify a program while it executes, poses a
unique problem with respect to state capture. Replacement
of algorithmic or structural components at run-time requires
that the original component be frozen, its nontransient state
injected into its replacement, and the new component ex-
changed with the old. As a simple illustrative example, let
us consider two implementations of a producer-consumer
queue, one implementation using a fixed-length array and
the other using a dynamically resizeable vector. Both imple-
mentations provide the same operations, put(), get(),
and isFull(). However, the vector isFull() opera-
tion will always return FALSE since the put() operation
dynamically allocates the necessary structures for append-
ing a new item to the queue.

State maintenance. Let us further consider how we might
design a meta-level function, as found in reflective sys-
tems [7, 15], whose purpose is to transfer state from one
implementation to another at run time. The meta-level can-
not simply copy an array onto a vector byte-by-byte, nor

1 The term perimorph is borrowed from geology. A perimorph is a crys-
tal that contains another crystal of a different type. We use it here as
an allusion where crystal facets are considered to be components or
factors of compositional structure.

can a put() operation, designed for one implementation,
be used to append an item to a queue using the other im-
plementation. Rather, the system must extract a representa-
tion of the array-based queue and inject it into the vector-
based queue. Such a state extraction and restoration scheme
must somehow understand both array and vector implemen-
tations of a queue and be able to convert between them.

A better solution is to enable state extraction to export
a normalized representation of the component’s state, un-
derstood by all other components of the same abstract type
(i.e. implements a queue). The normalized state can then
be assigned to an algorithmically or structurally dissimilar
component. A component only needs to know how to code
a normalized memento of its own state and how to decode
a normalized state memento captured from another compo-
nent. By using the memento pattern [8] in conjunction with
normalization, an array-based queue can be assigned to a
vector-based queue. This approach is used in Perimorph.

Reference update. Regardless of the method used to cap-
ture state, the issue of reference update during component
exchange must be addressed. When one component is ex-
changed for another it is necessary to update the references
that point to the old component such that they refer to the
new one. Doing so is necessary to ensure that the program
continues to execute correctly. An approach used in many
recomposable systems [5, 13, 14, 21] introduces a level of
indirection such that the objects that comprise an applica-
tion can be decoupled. This method allows an application to
access an object in a consistent way but the access method
is independent of the object’s implementation. As such, the
implementation of an object can be modified without chang-
ing how an application refers to it. A dynamically recom-
posable system must enable the decoupling of an applica-
tion such that components can be recomposed. Moreover,
decoupling can eliminate the necessity of updating an appli-
cation’s references to shared objects in the face of compo-
nent exchange. Perimorph decouples components through
the use of proxies, which enable the application to invoke
component operations while allowing transparent replace-
ment of the proxied component.

Collateral change. Collateral change refers to modifica-
tions applied to a system that transpire at the same time
and in response to some other system modification. For ex-
ample, to convert a queue from an array implementation to
a vector implementation requires both the replacement of
the array with a vector and the modification of the put(),
get() and isFull() operations such that they use a vec-
tor instead of an array. Moreover, these modifications must
all happen while the queue is “frozen” such that the entire
recomposition transpires atomically. Otherwise, operations
on the queue would be inconsistent. Collateral change also
affects the recomposition of nonfunctional concerns, such
as concurrency control. The dynamic addition of a mutex



to control concurrent use of a queue by producer and con-
sumer threads would require changes to both the put()
and get() operations such that the mutex would be locked
when these operations are invoked and released when each
thread is finished. Continued operation of the queue de-
pends on these changes happening collaterally.

3. Perimorph

Perimorph is implemented using Java and enables an ap-
plication designer to quantify and codify collateral changes,
as related to compositional adaptation, in terms of factor
sets. Perimorph uses repositories, called stores, to provide
a well known structure and interface for manipulating and
recomposing an application. Moreover, Perimorph provides
a meta-level view of the base-level application composition
while supporting run-time recomposition.

Component construction. Figure 1 shows the relationship
of a component, factor sets and factors. Factors represent
modifications that can be applied to component operations.
Each set of collateral changes can be codified as a factor
set that contains factors and nontransient data structures
shared between the factors. Components are identified by
a name (a Java String) given to them when they are created.
Interface sets are added to components and contain oper-
ation signatures defining the interfaces implemented by a
component. For instance, the adaptive queue has an inter-
face set consisting of the signatures put(Item), get()
and isFull(). Operations comprise an interface signa-
ture and zero or more factors. Factors are attached to an
interface signature forming the body of an operation.

Factors are attached to an interface operation as either
pre or post factors. Pre-factors are executed before a return
and post-factors are executed following a return. Pre-factors
implement the operation body, while post-factors provide
post operation processing. Any pre-factor can trigger a re-
turn, preventing the execution of subsequent pre-factors and
jumping to post-factor processing. Equally, any post-factor
can trigger completion of an operation. Post-factors allow
the completion of functions begun by pre-factors. For in-
stance, a pre-factor may lock a mutex to control concurrent
access to a component. A post-factor could unlock the mu-
tex, ensuring that other threads are allowed continued ac-
cess.

Data structures defined within factor sets represent non-
transient state. When factors from one factor set are re-
placed by another, nontransient state needs to be extracted
from the old set and injected into the new. The transfer of
state is completed using getState() and setState()
factor set methods that extract and inject a normalized state
memento. Factor set data structures are shared by all factors
belonging to the same factor set.

Set
Interface

Set

Component Definition

Factor

to

Operations Op

Op

Op

Op Op Op

Add
Interface

Set to
Component

Definition

Return

Pre
Post

Factors

V V Data Structures
Nontransient

Interface

Factor

Operation
Interface

Attach

Factor
Factor

Factor

Factor

Factor
Factor
Factor

Factor
Factor

Factor
Factor
Factor
Factor

Factors

Factor

Factor

Factor

Figure 1. Relationship of factors, factor sets
and a component definition.

Aspect Oriented Programming (AOP) aspects [12, 19]
and factor sets are related in that an aspect may comprise
one or more factor sets. However, Rather than focus on de-
signing a system in terms of cross-cutting concerns and dis-
entangled code, as in AOP, factors together with factor sets
provide constructs for capturing collateral change and non-
transient state. In other words, sets of collateral changes rep-
resent the factoring of an application such that recomposi-
tion is defined in terms of viable sets of modifications. All
factors that are members of the same factor set must be ap-
plied atomically. Applying nonviable changes to an appli-
cation usually results in program failure.

References and invocations. Proxies represent compo-
nents in the base-level, allowing the application to invoke
component operations while decoupling components and
providing the base-level with a consistent view of the pro-
gram’s structure. Proxies are used in place of base-level
component references. For example, in the adaptive queue,
both the producer and consumer hold a proxy, instead of
a reference, for the queue component. When the control
thread recomposes the array-queue as a vector-queue, it is
unnecessary to update these proxies, since the next invo-
cation of a put(), get() or isFull() operation, will
retrieve the vector-queue, instead of the array-queue, from
the ComponentStore.

Execution of a component operation is depicted in Fig-
ure 2. An application invokes a component operation by
calling a proxy’s invoke()method and specifying an op-
eration signature, such as put(Item), as a parameter. Us-
ing the component’s name, the required component is lo-
cated in the ComponentStore, and the specified opera-
tion is retrieved from the component’s interface set. Factors,
previously attached to the operation signature, are invoked
one after the other until operation execution is complete. Fi-
nally, control is returned to the base-level caller.



Component
Manager

Factor
Manager

Store
Component Factor

Store

Pre

Post

Factors

Factors Factors
attached to
interfaces
prior to

execution

Meta Level

Base Level

Application

Operation
Execution

Code Executed by
the application

Perimorph

Manipulates
Factor Store

Component

"queue"

component
definition

operation

1. invoke

{aItem.getClass()},
new Class[] 
("put(Item)",

new Object[] 
{aItem});

queueref.invoke

proxy for

2. Request definition
component

3. Return

"put(Item)"

5. Return

4. Execute
"put(Item)"
Operation

Op

Factor
Factor
Factor

Factor
Factor
Factor

"queue"

"queue"

Figure 2. Executing a component operation.

Recomposition. Recomposing a component involves
adding, deleting or replacing factors. Both functional and
nonfunctional factors can be added, removed or replaced,
allowing the entire function of a component to be changed
or augmented. For instance, an array-based queue can be re-
placed with a vector-based queue. Nonfunctional concerns,
such as concurrency controls or security, can be added and
removed as needed. Reference update is automatic as re-
composition operates on the component definition, leaving
all component proxies alone. Separating the definition of
a component from the references to it obviates the need
to update object references scattered throughout the code,
simplifying recomposition significantly.

Figure 3 diagrams the Perimorph adaptive queue, intro-
duced in Section 2. Functional concerns are defined by the
array and vector-based queue factor sets, shown at the bot-
tom of the figure. Recomposing a queue using a vector,
requires the exchange of factors from the array-based fac-
tor set with those of the vector-based factor set. Moreover,
the nontransient state of the array-based factor set must
be transferred to the vector-based factor set. Two nonfunc-
tional concerns are also implemented. Tracing, as defined
by the trace factor set, prints informational messages about
calls to the queue interface. Thread concurrency controls,
defined by the mutex factor set, prevent the producer and
consumer threads from operating on the queue simultane-
ously.

Activation and deactivation. Factor sets can be activated
or deactivated as they are put into or removed from use. Ac-
tivation and deactivation automates the process of initial-
ization and shutdown of factor sets, such as those defining
graphical interfaces or using threads. Reference counts are
kept for all factor sets such that the system can determine

Memento

Assign State
Vector

isFull

Mutex

Trace

�������������������� ������������������ ����������������������

Interface setQueue

put

get

Vector Queue Array Queue

Array

put

get

isFull

UnLock

Lock

Mutex

printEnter

printExit

Factor Set Factor Set

Factor Set
Factor Set

put get pause resume isFull

Figure 3. Composition of the adaptive queue
showing several factor sets.

when factors are attached to component interfaces. When
the reference count drops to zero, the FactorManager
calls the factor set’s deactivate() method. When the
reference count first rises above zero, the activate()
method is called. A designer needs only to implement these
methods for factor sets that require activation or deactiva-
tion; for other factor sets they can simply be left as empty
methods.

4. Example: Mapping Application

In addition to the example adaptive queue application,
we used Perimorph to implement a digital elevation model
(DEM) [1] mapping program. The DEM format is a com-
mon data format used by the United States Geological Sur-
vey (USGS) and other organizations for recording geo-
graphical elevation information. We developed our mapping
application using Perimorph such that a 2D viewer can be
recomposed into a 3D viewer at run time. Such recomposi-
tions are useful during handoff between dissimilar devices.
For instance, a palmtop, due to limited memory, processing
power and display capability, might use only the 2D viewer.
However, upon arriving at the office, a user may handoff the
application to a workstation that can easily present a three-
dimensional map. With Perimorph, the viewer can dynami-
cally be transformed into a 3D viewer without loss of appli-
cation state.

Figure 4 shows a two-dimensional representation of
Mount St. Helens after eruption in 1980. This representa-
tion uses different colors to indicate changes in elevation.



Typically, the lighter the color the greater the elevation.
Initially, the mapping application comprises factors im-
plementing a 2D viewer. Figure 5 depicts the factors
recomposed during conversion to a 3D display. Upgrading
the map requires modification of the functional concerns
of both the map plotter and map window components.
The map plotter paints the map on the map window. De-
pending on whether the map plotter and map window are
composed using the two or three-dimensional factor set
determines how the map data will be displayed. Nontran-
sient state, comprising DEM map data, is assigned from the
two-dimensional to the three-dimensional factor set during
factor exchange.

Figure 4. 2D map prior to recomposition.

Figure 6 shows a three-dimension map following dy-
namic, run-time recomposition. Proper initialization and
construction of the GUI components require the coding of
activate() and deactivate() factor set methods,
which were left as empty methods for the adaptive queue.

Besides dynamic reconfiguration, constructing applica-
tions with Perimorph enables other state-related functional-
ity. For example, both the adaptive queue and the elevation
mapping application can be captured at any point in their
execution and stored on disk or sent over the network to an-
other machine. A state memento for an entire application
can be constructed by saving the contents of the Perimorph
stores and the nontransient state of all factor sets. This me-
mento can be serialized and stored on disk or sent over a
network. When the application is restarted, Perimorph re-
quests a reload, deserializing these stores. References to
components are reestablished as the application requests
references from the ComponentManager. Thus, Peri-
morph applications can easily support checkpointing and

Interface set Map Window

newMap newMap

getInfoStr

repaint

getMap

destroy

Map

getInfoStr

repaint

getMap

destroy

MapMemento

Assign State

Map Plotter Interface set

Factor Set Factor Set
3D Map 2D Map

getMap destroy

newMap getInfoStr repaint

Figure 5. Recomposition of the DEM mapping
application. Recomposition of both the map
plotter and map window components is re-
quired. Operations on these components are
called by the map control which does not re-
quire any change.

Figure 6. 3D map following recomposition.

distributed handoff in addition to run-time recomposition.
Moreover, composition can be adjusted following handoff,
allowing adaptation to new environmental conditions, such
as reduced memory or a smaller physical display.



5. Conclusions

In this study, we designed a system, Perimorph, that sup-
ports dynamic, run-time recomposition of both functional
and nonfunctional concerns. The system allows transparent
reconfiguration of components. Factor sets provide a con-
struct for capturing how collateral change affects system re-
composition. Nontransient state is defined at the factor set
scope and can be assigned between factor sets of equivalent
abstract type using state normalization in conjunction with
the memento pattern.

Further study is needed on how best to factor adaptive
systems with respect to collateral change and automate state
transfer. Constructs that provide a high level of abstraction
for systems, like Perimorph, can further improve a software
designer’s ability to understand and build applications sup-
porting adaptation. Moreover, systems that support collat-
eral change and dynamic composition require formal meth-
ods and software engineering principles to verify correct-
ness and guide design and implementation of dynamically
recomposable systems.

References

[1] Rocky mountain mapping center: Elevation program.
http://rmmcweb.cr.usgs.gov/elevation/.

[2] F. Akkawi, A. Bader, and T. Elrad. Dynamic weaving for
building reconfigurable software systems. In Proceedings of
OOPSLA 2001 Workshop on Advanced Separation of Con-
cerns in Object-Oriented Systems, Tampa Bay, Florida, USA,
October 2001.

[3] M. Aksit, L. Bergmans, and S. Vural. An object-oriented
language-database integration model: The composition-
filters approach. In Proceedings of the European Confer-
ence on Object-Oriented Programming (ECOOP’92), pages
372–395, Utrecht, Netherlands, June 1992.

[4] D. Alexander, M. Shaw, S. Nettles, and J. Smith. Active
bridging. In Proceedings ACM SIGCOMM 1997, Cannes,
France, September 1997.

[5] L. Bergmans and M. Aksit. Composing crosscutting con-
cerns using composition filters. Communications of the
ACM, 44(10):51–57, October 2001.

[6] W.-K. Chen, M. A. Hiltunen, and R. D. Schlichting. Con-
structing adaptive software in distributed systems. In Pro-
ceedings of the 21st International Conference on Distributed
Computing Systems (ICDCS-21), pages 635–643, Mesa, Ari-
zona, USA, April 2001.

[7] J. des Riviéres and B. C. Smith. The implementation of
procedurally reflective languages. In Conference Record of
the 1984 ACM Symposium on LISP and functional program-
ming, pages 331–347, Austin, Texas, USA, 1984.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Indianapolis, Indiana, USA, 1995.

[9] M. A. Hiltunen and R. D. Schlichting. Adaptive dis-
tributed and fault-tolerant systems. International Journal of
Computer Systems Science and Engineering, 11(5):125–133,
September 1996.

[10] Information Sciences Institute University of Southern
California. RFC 793: Transmission control proto-
col. http://www.faqs.org/rfcs/rfc793.html,
September 1981.

[11] E. P. Kasten, P. K. McKinley, S. M. Sadjadi, and R. Stire-
walt. Separating introspection and intercession to support
metamorphic distributed systems. In Proceedings of the 22nd
International Conference on Distributed Computing Systems
ICDCS’02, Vienna, Austria, July 2002. to appear.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. Getting started with AspectJ. Commu-
nications of the ACM, 44(10):59–65, October 2001.

[13] F. Kon, M. Romàn, P. Liu, J. Mao, T. Yamane, L. C. Ma-
galhaes, and R. Campbell. Moinitoring, security, and dy-
namic configuration with the dynamicTAO reflective ORB.
In Proceedings IFIP/ACM International Conference on Dis-
tributed Systems Platforms and Open Distributed Processing
(Middleware’2000), pages 3–7, New York, New York, USA,
April 2000.

[14] R. Litiu and A. Prakash. Dacia: A mobile component frame-
work for building adaptive distributed applications. In Prin-
ciples of Distributed Computing (PODC) 2000 Middleware
Symposium, Portland, Oregon, USA, July 2000.

[15] P. Maes. Concepts and experiments in computational reflec-
tion. In Proceedings of the ACM Conerfence on Object-
Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA), pages 147–155, December 1987.

[16] P. K. McKinley and U. I. Padmanabhan. Design of compos-
able proxy filters for heterogeneous mobile computing. In
Proceedings of the Second International Workshop on Wire-
less Networks and Mobile Computing, 2001.

[17] B. Redmond and V. Cahill. Supporting unanticipated dy-
namic adaptation of application behaviour. In Proceedings
of the 16th European Conference on Object-Oriented Pro-
gramming. Springer-Verlag, Malaga, Spain, June 2002. vol-
ume 2374 of Lecture Notes in Computer Science.

[18] B. Tekinerdogan and M. Aksit. Adaptability in object-
oriented software development workshop report. In Proceed-
ings of the 10th Annual European Conference on Object-
Oriented Programming (ECOOP), Linz, Austria, July 1996.

[19] E. Truyen, W. Joosen, and P. Verbaeten. Run-time support
for aspects in distributed system infrastructure. In Proceed-
ings of the First AOSD Workshop on Aspects, Components,
and Patterns for Infrastructure Software (ACP4IS’2002), En-
schede, Netherlands, 2002.

[20] R. van Renesse, K. Birman, M. Hayden, A. Vaysburd, and
D. Karr. Building adaptive systems using ensemble. Tech-
nical Report TR97-1638, Department of Computer Science,
Cornell University, Ithaca, New York, USA, July 1997.

[21] S. Zhang, M. Khambatti, and P. Dasgupta. Process migration
through virtualization in a computing community. In 13th
IASTED Conference on Parallel and Distributed Computing
Systems (PDCS2001), Dallas, Texas, USA, August 2001.


