
Programming Language Support for Adaptable Wearable Computing
�

P. K. McKinley, S. M. Sadjadi, E. P. Kasten and R. Kalaskar

Software Engineering and Network Systems Laboratory
Department of Computer Science and Engineering

Michigan State University
East Lansing, Michigan 48824�

mckinley,sadjadis,kasten,kalaskar � @cse.msu.edu

Abstract

This paper investigates the use of programming lan-
guage constructs to realize adaptive behavior in support
of collaboration among users of wearable and handheld
computers. A prototype language, Adaptive Java, contains
primitives that permit programs to modify their own op-
eration in a principled manner. In a case study, Adap-
tive Java was used to construct MetaSocket components,
whose composition and behavior can be adapted to chang-
ing conditions during execution. MetaSockets were then
integrated into Pavilion, a web-based collaboration frame-
work, and experiments were conducted on a mobile com-
puting testbed containing wearable, handheld, and laptop
computer systems. Performance results demonstrate the
utility of MetaSockets to improving the quality of interac-
tive audio streams and reliable data transfers among col-
laborating users.

Keywords: adaptive middleware, reflection, wearable computing,
mobile computing, wireless networks, forward error correction.

1 Introduction

The large-scale deployment of wireless communication
services and advances in wearable computers and other
mobile devices, enable users to collaborate in new ways.
Example applications include computer-supported coopera-
tive work, collaborative scientific experimentation, manage-
ment of industrial installations, and command and control
systems. However, given their synchronous and interactive

�
This work was supported in part by the U.S. Department of the

Navy, Office of Naval Research under Grant No. N00014-01-1-0744,
and in part by National Science Foundation grants CDA-9617310, NCR-
9706285, CCR-9912407, EIA-0000433, and EIA-0130724.

nature, collaborative applications are particularly sensitive
to the heterogeneous characteristics of both the computing
devices and the network connections used by participants.

Wearable computers, in particular, pose several chal-
lenges to the design of collaborative applications. An ap-
plication must tolerate the highly dynamic channel condi-
tions that arise as the user moves about the environment.
Moreover, the application must accommodate devices with
widely varying input devices and display characteristics. Fi-
nally, an application must tolerate limited system resources,
relative to that of workstations, in terms of processor speed,
memory size, and power. To enable effective collaboration
among users in such environments, including transferring
applications from one device to another, the systems must
adapt to these conditions at run time.

Adaptability can be implemented in different parts of the
system. One approach to is to introduce a layer of adaptive
communication-oriented middleware between applications
and underlying transport services [14, 24, 25, 39, 43]. An
adaptive middleware framework can help to insulate appli-
cation components from platform variations and changes in
external conditions. On the other hand, many context-aware
applications are more effective when they explicitly take ad-
vantage of the dynamics of the environment [8]. As a result,
a number of supporting frameworks have been proposed to
assist the application developer in managing context and
adapting to changing conditions [9–11, 13, 23, 32, 38].

Regardless of what parts of the system implement adap-
tive behavior, an important issue is how to adapt to sit-
uations unforeseen during the original software develop-
ment. This problem is especially important to systems that
must continue to operate (correctly) during exceptional sit-
uations. Examples include systems used to manage critical
infrastructures, such as power grids and nuclear facilities, as
well as command and control environments. Such systems
require run-time adaptation, including the ability to modify
and replace components, in order to survive hardware com-

ponent failures, network outages, and security attacks.
We are currently conducting an ONR-sponsored project

called RAPIDware that addresses the design of adaptive
middleware services to support critical infrastructure pro-
tection in dynamic, heterogeneous environments. The
RAPIDware project complements many of those cited ear-
lier by focusing on software technologies and programming
abstractions for building adaptable systems. The techniques
use rigorous software engineering principles to help pre-
serve functional properties of the code as the system adapts
to its environment. As part of this study, we have devel-
oped Adaptive Java [18], an extension to Java that supports
dynamic reconfiguration of software components.

In this paper, we use Adaptive Java to support dynamic
reconfiguration of collaborative applications executed on
wearable computers. The main contribution is to show by
experimentation on a mobile computing testbed that these
language constructs provide an effective way to implement
adaptable components. We anticipate that the Adaptive Java
language may be useful to other researcher groups that are
investigating adaptability in ubiquitous computing environ-
ments. Section 2 provides an overview of our experimental
environment, including background on Pavilion, a collabo-
rative framework used in our study. Section 3 describes the
Adaptive Java language. In Section 4, we describe the use of
Adaptive Java to transform normal Java sockets into “meta-
morphic” sockets, or MetaSockets, which support run-time
modifications to their operation and interfaces. Section 5
describes the use of MetaSockets to support adaptive error
control on audio channels and reliable multicast in Pavilion,
including results of a performance study on a mobile testbed
that includes three Xybernaut MA-V wearable computers.
Section 6 discusses related work, and Section 7 presents our
conclusions and discusses future directions.

2 Experimental Environment

The RAPIDware project is largely experimental. All
the software techniques we are developing are implemented
and evaluated on a mobile computing testbed. The testbed
includes various types of mobile computers: several 1Gz
Dell laptop computers (bootable in either Windows 2000
or Linux), several Compaq iPAQ handheld systems (some
runing Windows CE, others running Linux) and three Xy-
bernaut Mobile Assistant V wearable computers (each with
a 500 MHz processor and 256M memory). These systems
currently communicate via an 11Mbps 802.11b wireless lo-
cal area network (WLAN). Our local wireless cell is also
connected to a a multi-cell WLAN that covers many areas of
the MSU Engineering Building and its courtyard; see Fig-
ure 1.

To support our investigations of collaborative computing
across heterogeneous environments, we previously devel-

Figure 1. Users of the mobile computing testbed in
the courtyard of the MSU Engineering Building.

oped an object-oriented groupware framework called Pavil-
ion [29]. Pavilion is written in Java and supports collabora-
tion using off-the-shelf browsers such as Netscape Naviga-
tor and Microsoft Internet Explorer. In default mode, Pavil-
ion operates as a collaborative web browser, as depicted in
Figure 2. A member of the group acquires control of the
session through the leadership protocol. On the leader’s
system, shown on the left in Figure 2, the browser interface
monitors the activities of the web browser. The interface
is notified whenever a new URL is loaded by the browser,
and it reliably multicasts this URL to all other participants.
The web resource itself and any embedded/linked files are
reliably multicast by the leader’s proxy server to the proxy
servers of the other group members. At each receiving sys-
tem, the browser interface requests the local web browser
to load the new URL. The target web browser will subse-
quently initiate retrieval of the files, via its proxy, which
will return the requested items. While browsing, the collab-
orating users can speak with each other through real-time
audio channels [31]. In addition to supporting collaborative
browsing, Pavilion components can be reused and extended
in order to construct new collaborative applications. For
example, Pavilion has been used to develop VGuide [5], a
collaborative virtual reality application that enables a user
to select any VRML file from the Internet and lead a group
of users through that virtual world.

Pavilion was originally designed for wired network envi-
ronments. We later extended Pavilion to wireless networks
by constructing proxy servers to meet the needs of mobile
computers [31]. Although these proxies support run-time
adaptability, their adaptation techniques are ad hoc, rather
than supported by the language (Java) or the run-time sys-
tem. In the RAPIDware project, we seek principled ap-
proaches, based on programming abstractions and rigor-
ous software engineering methods, to streamline the de-

����� ���	�
�Contents

URL

Contents

Grant

Request

GET

Multicast
Protocol

Leadership
Protocol

Browser
Interface

�� �����

Server

�� � �������

GET

Request Grant

Contents

���
�����
� �	�"!

Multicast
Protocol

Leadership
Protocol

�� ���#�

Server

Browser
Interface

GET

Contents

URL

Contents

SeqNum

$%!
�
&�'(*),+-�.�
�
�	�/!

Network

Contents

Figure 2. Default operation of Pavilion.

velopment and maintenance of distributed computing sys-
tems, while enhancing their capability for automatic self-
configuration and adaptation. In the remainder of this pa-
per, we describe Adaptive Java and how we used it to re-
alize adaptability in the Pavilion framework when executed
on wearable systems.

3 Adaptive Java Background

Adaptive Java [18] is based on computational reflec-
tion [26, 37], which refers to the ability of a computational
process to reason about (and possibly alter) its own behav-
ior. Typically, the base-level functionality of the program
is augmented with one or more meta levels, each of which
observes and manipulates the base level. In object-oriented
environments, the entities at a meta level are called meta-
objects, and the collection of interfaces provided by a set of
meta-objects is called a meta-object protocol, or MOP.

The basic building blocks used in an Adaptive Java pro-
gram are components, which can be thought of as adaptable
classes. The key programming concept in Adaptive Java is
to provide three separate component interfaces: one for per-
forming normal imperative operations on the object (com-
putation), one for observing internal behavior (introspec-
tion), and one for changing internal behavior (intercession).
Operations in the computation dimension are referred to as
invocations. Operations in the introspection dimension are
called refractions: they offer a partial view of internal struc-
ture and behavior, but are not allowed to change the state or
behavior of the component. Operations in the intercession
dimension are called transmutations: they are used to mod-
ify the computational behavior of the component.

This separation of interfaces is intended to address a key
issue that arises in the use of reflection, namely, the de-
gree to which the system should be able to change its own
behavior [19]. A completely open implementation implies
that an application can be recomposed entirely at run-time,
which may produce undesired behavior. On the other hand,
limiting adaptability also limits the ability of the system

to survive adverse situations. Hence, rather than consider-
ing MOPs as orthogonal portals into base-level functional-
ity [7], we propose an alternative model in which MOPs are
constructed from primitives, namely, refractions and trans-
mutations. Different MOPs can be defined for different
cross-cutting concerns: communication quality-of-service,
fault tolerance, security, energy management, and so on. We
argue that defining different MOPs in terms of a common
set of primitives facilitates the coordination of their activi-
ties.

An existing Java class is converted into an adaptable
component in two steps, as shown in Figure 3. First a base-
level Adaptive Java component is constructed from the Java
class through an operation called absorption, which uses the
absorbs keyword. As part of the absorption procedure,
mutable methods called invocations are created on the base-
level component to expose the functionality of the absorbed
class. Invocations are mutable in the sense that they can be
added and removed from existing components at run-time
using meta-level transmutations. We emphasize that the re-
lationship between invocations on the base-level component
and methods on the base-level class need not be one-to-one.
Some of the base-level methods may be occluded or even
combined under a single invocation as the system’s form is
modified. In this manner, the base-level component defines
explicitly those parts of the original class are to be adapt-
able.

In the second step, metafication enables the creation of
refractions and transmutations that operate on the base com-
ponent, as shown in Figure 3. Meta components are de-
fined using the metafy keyword. We emphasize that the
meta-level can also be given a meta-level, which can be
used to refract and transmute the meta-level. In theory, this
reification of meta-levels for meta-levels could continue in-
finitely [26]. Refractions and transmutations embody lim-
ited adaptive logic and are intended for defining how the
base level can be inspected and changed. The logic defining
why and when these operations should be used is provided
at other meta levels or by other components entirely.

We used CUP [15], a parser generator for Java, to im-
plement Adaptive Java Version 1.0, which is used in this
study. CUP takes our grammar productions for the Adap-
tive Java extensions and generates an LALR parser, called
ajc, which performs a source-to-source conversion of Adap-
tive Java code into Java code. Semantic routines were added
to this parser such that the generated Java code could then
be compiled using a standard Java compiler.

4 MetaSocket Design and Operation

We used Adaptive Java to develop an adaptable compo-
nent called a MetaSocket. By using MetaSockets instead
of normal Java sockets, an application or middleware ser-

base−level
 class

base−level
component

meta component

methods invocations

refraction

transmutation

absorbs metafy

Figure 3. Component absorption and metafication.

vice can dynamically observe and change its behavior in
response to external events. In the RAPIDware project, we
are using MetaSockets for several purposes, including re-
porting traffic patterns for intrusion detection, reducing en-
ergy consumption when the battery is low, and to managing
the quality-of-service of network connections. In the study
described herein, we integrated MetaSockets into the Pavil-
ion collaborative framework and experimented with adap-
tive error control for wearable computers interconnected by
a wireless LAN.

The characteristics of wireless LANs are very different
from those of their wired counterparts. Factors such as sig-
nal strength, interference, and antennae alignment produce
dynamic and location-dependent packet loss [30]. These
problems affect multicast connections more than unicast,
since the 802.11b MAC layer does not provide link-level
acknowledgements for multicast frames. Forward error cor-
rection (FEC) can be used to improve reliability by intro-
ducing redundancy into the data channel. As shown in Fig-
ure 4, an (�����) block erasure code converts � source pack-
ets into � encoded packets, such that any � of the � encoded
packets can be used to reconstruct the � source packets [35].
Hence, in multicast data streams, as used by collaborative
applications, a single parity packet can be used to correct
independent single-packet losses among different receivers.

E
N

C
O

D
E

R

D
E

C
O

D
E

R

SOURCE���	�
� RECONSTRUCTED
DATA

RECEIVED���	�
�ENCODED���	�
�

Figure 4. Operation of block erasure code.

Figure 5 depicts the structure of a MetaSocket com-
ponent that has been configured with a two-filter pipeline.
A filter is a piece of code that applies a particular compu-
tation, such as FEC or compression, to a data stream [31].
The base-level component, called SendSocket, was cre-
ated by absorbing the existing Java Socket class. Cer-
tain public members and methods are made accessible
through invocations on SendSocket. This particular in-
stantiation is intended to be used only for sending data,
so the only invocations available to other components are
send() and close(). Hence, the application code us-
ing the computational interface of a metamorphic socket
looks similar to code that uses a regular socket. The Send-
Socket was metafied to create a meta-level component
called MetaSocket. GetStatus() is a refraction that
is used to obtain the current configuration of filters. In-
sertFilter() and RemoveFilter() are transmuta-
tions that are used to modify the filter pipeline.

Socket

Send-
Socket

�����������������
Component

InsertFilter
RemoveFilter

GetStatusclose
send

filter with thread������� ��!"!�#�$

Figure 5. Structure of a MetaSocket.

Separate components, called a Decision Makers, reside
within each application and control the behavior of adaptive
components such as MetaSockets. For example, a Decision
Maker might use refractions on a MetaSocket to monitor

packet loss behavior and decide to modify the filter config-
uration using a transmutation. For purposes of testing the
MetaSocket interfaces, we also developed an interactive ad-
ministration utility that enables us to manipulate MetaSock-
ets directly.

5 Experimental Results

The availability of an adaptable socket-like component
enabled us to construct an adaptable version of Pavilion
for use in wearable computers and other mobile devices.
Specifically, we replaced the Java sockets with MetaSock-
ets and added decision maker components to adjust their
behavior at run time. Next, using the wearable computers
in our testbed, we experimented with the MetaSockets used
for interactive audio streaming among participants and for
reliable multicasting of web resources.

Interactive Audio Streaming. First, we investigated the
use of MetaSockets to enhance the quality of wireless au-
dio channels at run time. The audio streaming code com-
prises two main parts. On the sending station, the Recorder
uses the javax.sound package to read audio data from
a system’s microphone and multicast it on the network. On
the receiving station, the Player receives the audio data and
plays it using javax.sound. The audio encoding uses a
single channel with 8-bit samples. Relatively small packets
are necessary for delivering audio data, in order to reduce
jitter and minimize losses [31]. Hence, each packet con-
tains 128 bytes, or 16 msec of audio.

We experimented with the transmutative interface to
MetaSockets by dynamically inserting and removing FEC
filters from the MetaSockets on the sending and receiving
sides of the audio stream. In these tests, we used our in-
teractive GUI, instead of an autonomous decision maker, to
manipulate the metasockets. We streamed audio across the
wireless LAN from a 1GHz laptop computer to a Xyber-
naut MA-V system and dynamically inserted FEC filters in
the respective MetaSockets. Figure 6 shows five superim-
posed traces, corresponding to the insertion of FEC filters
with � ��� and � ��� ��� ����	 �
��� , and 16, respectively. For
each trace, the user of the wearable computer moved far-
ther away from the wireless access point, generally produc-
ing a lower signal-to-noise ratio and higher packet losses.
The axis shows number of packets being sent, each unit
representing a set of 200 data packets (or 50 4-packet FEC
groups), and the � axis shows the percentage of data pack-
ets lost. In all traces, an FEC filter is inserted at packet set
20 and removed at packet set 40. As shown, the filters are
very effective in reducing the packet loss.

Reliable Multicasting. The delivery of web resources
among Pavilion programs is provided by the Web-Based

0%

10%

20%

30%

40%

50%

1 6 11 16 21 26 31 36 41 46 51 56�� ������"!

$%
& '() *
++,
'-%
'.
($
/'

0214365 7
8 92:
0214365 ;
8 92:
0214365 <>=
8 9?:
0214365 <>@
8 9?:
0214365 <>7
8 9?:

Figure 6. Dynamic FEC on audio MetaSockets.

Reliable Multicast (WBRM) protocol [28], an application-
level protocol that implements reliability atop UDP/IP mul-
ticast. Referring back to Figure 2, The WBRM protocol
is a receiver-initiated, or NAK-based, protocol: a receiver
notifies the sender only when it misses a packet in the
stream [41]. Figure 7 shows the WBRM protocol archi-
tecture. Both the sending and receiving components of the
protocol comprise a set of Java threads and data structures.
The sender maintains a log vector describing the resource
stream and a cache of recently transmitted resources. The
receiver sends NAKs for missing packets, while buffering
those that arrive intact but out-of-order.

A4B"C"DFEHG I I J"K�G"I

LNMPO�QHR>S�T MPU
Cache

Receive

Out-of-order

Dispatcher

Processor

RTT

NAK
Processor

Echo

Sender

Checker

Receiver
ApplicationV WXT R"U Y Z>S>R ApplicationV WXT R"U Y Z>S[RPackets

NAKs

\?]4]_^ `"a D

\bG"I G�`"c
Non-data

\?G"I G"`�cdFJ e J

f `�g D>h c>G h
Resources

Re-ordered\�G I D>i[h B G"I

Figure 7. WBRM protocol architecture.

In this study, we again insert FEC filters into MetaSock-
ets at run time. Figure 8 shows typical results near the pe-
riphery of the wireless cell without FEC. The dark vertical
lines indicates packet losses that result in NAKs and retrans-
missions, whereas light lines indicate successful packet de-
livery). Using a simple (6,4) FEC filter, the delivery rate
increases dramatically.

Figure 9 shows the latency results, with and without the
FEC filter, for downloading different sized files from a wire-
less laptop to one of the MA-V wearable systems near the

1 34 67 10
0

13
3

16
6

19
9

23
2

26
5

29
8

33
1

36
4

39
7

43
0

46
3

49
6

52
9

56
2

59
5

62
8

66
1

69
4

72
7

76
0

79
3

82
6

85
9

89
2

92
5

95
8

99
1

��������������	
�����������������������

� � �
� �
���
� �
 !#"
$ %
��#&
� '�
 ("
) (
 (
* +(
,-

.0/ 1 2 3�465 7�8�3�4 2 3�9;:�2
250

.</ 1 2 3�4�=>3�?�@�AB3�9
850

Figure 8. Trace of packet losses in WBRM.

periphery of the wireless cell. The results show the average
of 5 trial runs. The reduction in latency ranges from 18%
for a 50Kbyte file to 36% for a 1Mbyte file. We emphasize
that, given the high error rate at this location, even FEC can-
not produce a very high throughput. The theoretical limit of
802.11b is 7 Mbps [17], and a highly tuned C++ program
can achieve over 6 Mbps [40]. The Java WBRM protocol
can achieve about 4 Mbps when the receiver is near the ac-
cess point. However, the performance using MetaSockets in
this remote location is comparable to what we can achieve
with a tuned Java proxy server. We report only initial results
here, and we are continuing our investigations. Moreover,
the use of MetaSockets (and Adaptive Java, in general) fa-
cilitates a cleaner separation between adaptive code and ap-
plication code. Indeed, we did not touch the base Pavilion
or WBRM code in these tests.

CD�EGF�H D�IKJML N OQP�ERN L SQIBF�JQE�N L S�D�T�L�U�V�W

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

50 100 500 1000XBY Z [\<Y] [_^ `�aKb

cd e
fg e
dhhd i
fjk
lm i
n

oqp r s#t0u#r0vKwKx
oqp r s_vyw<x

Figure 9. Reliable multicast latency.

6 Related Work

In recent years, numerous research groups have ad-
dressed the issue of adaptive middleware frameworks that

can accommodate dynamic, heterogeneous infrastructures.
Examples include Adapt [12], MOST [14], Rover [16],
MASH [27], TAO [24], dynamicTAO [22], MobiWare [4],
MCF [25], QuO [43], MPA [36], Odyssey [34], Da-
Capo++ [39], RCSM [44], and Sync [33]. In addition, sev-
eral higher-level frameworks have been designed to sup-
port wearable/ubiquitous applications; examples include
Hive [32], Ektara [9], and Proem [23], Puppeteer [13],
Aura [38], and the Context Toolkit [10].

These and related projects have greatly improved the un-
derstanding of how a system can adapt to changes in the en-
vironment and in user behavior and interactions. Our work
in the RAPIDware project complements such contributions
by focusing on principled approaches to adaptive software
design that include programming language support and rig-
orous software engineering methods. Such support holds
the promise that compile-time and run-time checks can be
performed on the adaptive code in order to help ensure con-
sistency and preservation of certain key properties as the
system changes. Moreover, these techniques facilitate the
run-time adaptation of the system in ways not anticipated
during the original development.

Other researchers have addressed the use of program-
ming language constructs to realize adaptable behavior. For
example, Andersson and Ritzau [3] describe a method to
support dynamic update of Java programs, but that tech-
nique requires a modified JVM. Our “weaving” of adap-
tive code with the base application is reminiscent of aspect-
oriented programming [21]. Although many projects in
the AOP community focus on compile-time weaving [20],
a growing number of projects focus on run-time compo-
sition [2, 42]. By defining a reflection-based component
model, Adaptive Java also supports run-time reconfigura-
tion but is not restricted to the AOP model that requires
identification of predefined “pointcuts” at compile time. A
related concept is composition filters [6], which provide a
mechanism for disentangling the cross-cutting concerns of
a software system. Besides filters, however, Adaptive Java
can be applied to components that interact in arbitrary ways,
and therefore is perhaps more general.

The PCL project [1] also focuses on language support for
run-time adaptability and is perhaps most closely related to
our work. PCL is intended for use directly by applications.
Our concept of “wrapping” classes with base components is
similar to the use of Adaptors used in PCL. However, mod-
ification of the base class in PCL appears to be limited to
changing variable values, whereas Adaptive Java transmu-
tations can modify arbitrary structures or subcomponents.
Moreover, by combining encapsulation with metafication,
Adaptive Java can be used to realize adaptations in multiple
meta-levels.

7 Conclusions and Future Directions

In this study, we investigated the application of Adap-
tive Java to support run time adaptation in wearable com-
puters. We demonstrated the use of MetaSockets in extend-
ing Pavilion, a collaborative computing framework, to mo-
bile wearable systems. In particular, we used the run-time
transmutative capability of MetaSockets to improve their re-
siliency to packet losses on a wireless LAN. While the ex-
amples in this paper are both communication services, we
emphasize that the Adaptive Java mechanisms are general.
Currently, we are conducting several subprojects where we
are using Adaptive Java to address other key areas where
software adaptability is needed in wearable computers and
other mobile devices: dynamically changing the fault tol-
erance properties of components; adaptive security policies
dynamically woven across components; mitigation of the
heterogeneity of system display characteristics; and energy
management strategies for battery-powered devices.

Further Information. A number of related papers and
technical reports of the Software Engineering and Network
Systems Laboratory can be found at the following URL:
http://www.cse.msu.edu/sens.

References

[1] V. Adve, V. V. Lam, and B. Ensink. Language and compiler
support for adaptive distributed applications. In Proceedings
of the ACM SIGPLAN Workshop on Optimization of Middle-
ware and Distributed Systems (OM 2001), Snowbird, Utah,
June 2001.

[2] F. Akkai, A. Bader, and T. Elrad. Dynamic weaving for
building reconfigurable software systems. In Proceedings of
OOPSLA 2001 Workshop on Advanced Separation of Con-
cerns in Object-Oriented Systems, Tampa Bay, Florida, Oc-
tober 2001.

[3] J. Andersson and T. Ritzau. Dynamic code update in JDrums.
In Proceedings of the ICSE’00 Workshop on Software Engi-
neering for Wearable and Pervasive Computing, Limerick,
Ireland, 2000.

[4] O. Angin, A. T. Campbell, M. E. Kounavis, and R.R.-F.M.
Liao. The Mobiware toolkit: Programmable support for
adaptive mobile networking. IEEE Personal Communica-
tions Magazine, Special Issue on Adapting to Network and
Client Variability, August 1998.

[5] J. Arango and P. K. McKinley. VGuide: Design and per-
formance evaluation of a synchronous collaborative virtual
reality application. In Proceedings of the IEEE International
Conference on Multimedia and Expo, New York, July 2000.

[6] L. Bergmans and M. Aksit. Composing crosscutting con-
cerns using composition filters. Communications of the
ACM, 44(10):51–57, October 2001.

[7] G. S. Blair, G. Coulson, P. Robin, and M. Papathomas. An
architecture for next generation middleware. In Proceedings
of the IFIP International Conference on Distributed Sys-
tems Platforms and Open Distributed Processing (Middle-
ware’98), The Lake District, England, September 1998.

[8] G. Chen and D. Kotz. A survey of context-aware mobile
computing research. Technical Report TR2000-381, Com-
puter Science Department, Dartmouth College, Hanover,
New Hampshire, November 2000.

[9] R. W. DeVaul and A. Pentland. The Ektara architecture:
The right framework for context-aware wearable and ubiq-
uitous computing applications. The Media Laboratory, Mas-
sachusetts Institute of Technology, unpublished, 2000.

[10] A. K. Dey and G. D. Abowd. The Context Toolkit: Aiding
the development of context-aware applications. In Proceed-
ings of the Workshop on Software Engineering for Wearable
and Pervasive Computing, Limerick, Ireland, June 2000.

[11] S. Fickas, G. Kortuem, and Z. Segall. Software organization
for dynamic and adaptable wearable systems. In Proceed-
ings First International Symposium on Wearable Computers
(ISWC’97), Cambridge, Massachusetts, October 1997.

[12] T. Fitzpatrick, G. Blair, G. Coulson, N. Davies, and P. Robin.
A software architecture for adaptive distributed multimedia
applications. IEE Proceedings - Software, 145(5):163–171,
1998.

[13] J. Flinn, E. de Lara, M. Satyanarayanan, D. S. Wallach, and
W. Zwaenepoel. Reducing the energy usage of office ap-
plications. In Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware
2001), pages 252–272, Heidelberg, Germany, November
2001.

[14] A. Friday, N. Davies, G. Blair, and K. Cheverst. Developing
adaptive applications: The MOST experience. Journal of In-
tegrated Computer-Aided Engineering, 6(2):143–157, 1999.

[15] S. E. Hudson, editor. CUP User’s Manual. Usability Center,
Georgia Institute of Technology, july 1999.

[16] A. D. Joseph, J. A. Tauber, and M. F. Kaashoek. Mobile com-
puting with the Rover toolkit. IEEE Transactions on Com-
puters: Special issue on Mobile Computing, 46(3), March
1997.

[17] A. Kamerman and G. Aben. Net throughput with ieee 802.11
wireless LANs. In Proceedings of the IEEE Wireless Com-
munications and Networking Confernce 2000 (WCNC 2000),
volume 2, pages 747–752, 2000.

[18] E. Kasten, P. K. McKinley, S. Sadjadi, and R. Stirewalt. Sep-
arating introspection and intercession in metamorphic dis-
tributed systems. In Proceedings of the IEEE Workshop
on Aspect-Oriented Programming for Distributed Comput-
ing (with ICDCS’02), Vienna, Austia, July 2002. to appear.

[19] G. Kiczales. Towards a new model of abstraction in the engi-
neering of software. In International Workshop on Reflection
and Meta-Level Architecture, Tama-City, Tokyo, Japan, nov
1992.

[20] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of aspectj. In ECOOP,
pages 327–353, 2001.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Videira Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
oriented programming. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP).
Springer-Verlag LNCS 1241, June 1997.

[22] F. Kon, M. Román, P. Liu, J. Mao, T. Yamane, L. C. M.
aes, and R. H. Campbell. Monitoring, security, and dynamic
configuration with the dynamicTAO reflective ORB. In Pro-
ceedings of the IFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware 2000), New York,
April 2000.

[23] G. Kortuem, J. Schneider, D. Preuitt, T. G. C. Thompson,
S. Fickas, and Z. Segall. When peer-to-peer comes face-to-
face: Collaborative peer-to-peer computing in mobile ad-hoc
networks. In Proceedings of the 2001 International Con-
ference on Peer-to-Peer Computing (P2P2001), Linköpings,
Sweden, August 2001.

[24] F. Kuhns, C. O’Ryan, D. C. Schmidt, O. Othman, and J. Par-
sons. The design and performance of a pluggable protocols
framework for object request broker middleware. In Pro-
ceedings of the IFIP Sixth International Workshop on Pro-
tocols For High-Speed Networks (PfHSN ’99), Salem, Mas-
sachusetts, August 1998.

[25] B. Li and K. Nahrstedt. A control-based middleware frame-
work for quality of service adaptations. IEEE Journal of
Selected Areas in Communications, 17(9), September 1999.

[26] P. Maes. Concepts and experiments in computational re-
flection. In Proceedings of the ACM Conference on Object-
Oriented Languages (OOPSLA), dec 1987.

[27] S. McCanne, E. Brewer, R. Katz, L. Rowe, E. Amir,
Y. Chawathe, A. Coopersmith, K. Mayer-Patel, S. Raman,
A. Schuett, D. Simpson, A. Swan, T. Tung, D. Wu, and
B. Smith. Toward a common infrastructure for multimedia-
networking middleware. In Proc. 7th Intl. Workshop on Net-
work and Operating Systems Support for Digital Audio and
Video (NOSSDAV ’97), St. Louis, Missouri, May 1997.

[28] P. K. McKinley, R. R. Barrios, and A. M. Malenfant. De-
sign and performance evaluation of a Java-based multicast
browser tool. In Proceedings of the 19th International Con-
ference on Distributed Computing Systems, pages 314–322,
Austin, Texas, 1999.

[29] P. K. McKinley, A. M. Malenfant, and J. M. Arango. Pavil-
ion: A distributed middleware framework for collaborative
web-based applications. In Proceedings of the ACM SIG-
GROUP Conference on Supporting Group Work, pages 179–
188, November 1999.

[30] P. K. McKinley and A. P. Mani. An experimental study of
adaptive forward error correction for wireless collaborative
computing. In Proceedings of the IEEE 2001 Symposium
on Applications and the Internet (SAINT-01), San Diego-
Mission Valley, California, January 2001.

[31] P. K. McKinley, U. I. Padmanabhan, and N. Ancha. Exper-
iments in composing proxy audio services for mobile users.
In Proceedings of the IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware 2001), pages
99–120, Heidelberg, Germany, November 2001.

[32] N. Minar, M. Gray, O. Roup, R. Krikorian, and P. Maes.
Hive: Distributed agents for networking things. In Pro-
ceedings of ASA/MA’99, the First International Symposium
on Agent Systems and Applications and Third International
Symposium on Mobile Agents, 1999.

[33] J. Munson and P. Dewan. Sync: A system for mobile collab-
orative applications. IEEE Computer, 30(6):59–66, 1997.

[34] B. D. Noble and M. Satyanarayanan. Experience with adap-
tive mobile applications in Odyssey. Mobile Networks and
Applications, 4:245–254, 1999.

[35] L. Rizzo. Effective erasure codes for reliable computer com-
munication protocols. ACM Computer Communication Re-
view, April 1997.

[36] M. Roussopoulos, P. Maniatis, E. Swierk, K. Lai, G. Appen-
zeller, and M. Baker. Person-level routing in the mobile peo-
ple architecture. In Proceedings of the 1999 USENIX Sym-
posium on Internet Technologies and Systems, Boulder, Col-
orado, October 1999.

[37] B. C. Smith. Reflection and semantics in Lisp. In Proceed-
ings of 11th ACM Symposium on Principles of Programming
Languages, pages 23–35, 1984.

[38] J. P. Sousa and D. Garlan. Aura: an architectural framework
for user mobility in ubiquitous computing environments. In
Proceedings of the 3rd Working IEEE/IFIP Conference on
Software Architecture, Montreal, Canada, August 2000. to
appear.

[39] B. Stiller, C. Class, M. Waldvogel, G. Caronni, and D. Bauer.
A flexible middleware for multimedia communication: De-
sign implementation, and experience. IEEE Journal of Se-
lected Areas in Communications, 17(9):1580–1598, Septem-
ber 1999.

[40] C. Tang. Adaptive reliable multicast in wireless local area
networks. Master’s thesis, Department of Computer Science
and Engineering, Michigan State University, East Lansing,
Michigan, 2002.

[41] D. Towsley, J. Kurose, and S. Pingali. A comparison of
sender-initiated and receiver-initiated reliable multicast pro-
tocols. IEEE Journal on Selected Areas in Communications
15, 3, pages 398–406, April 1997.

[42] E. Truyen, B. N. Jörgensen, W. Joosen, and P. Verbaeten.
Aspects for run-time component integration. In Proceedings
of the ECOOP 2000 Workshop on Aspects and Dimensions
of Concerns, Sophia Antipolis and Cannes, France, 2000.

[43] R. Vanegas, J. A. Zinky, J. P. Loyall, D. A. Karr, R. E.
Schantz, and D. E. Bakken. QuO’s runtime support for qual-
ity of service in distributed objects. In Proceedings of the
IFIP International Conference on Distributed Systems Plat-
forms and Open Distributed Processing (Middleware’98),
The Lake District, England, September 1998.

[44] S. S. Yau and F. Karim. Adaptive middleware for ubiqui-
tous computing environments. In Proceedings of IFIP WCC
2002 Stream 7 on Distributed and Parallel Embedded Sys-
tems (DIPES 2002), Montreal, Canada, August 2002. to ap-
pear.

