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Abstract
This paper describes the internal architecture and oper-

ation of an adaptable communication component called the
MetaSocket. MetaSockets are created using Adaptive Java,
a reflective extension to Java that enables a component’s in-
ternal architecture and behavior to be adapted at run time
in response to external stimuli. This paper describes how
adaptive behavior is implemented in MetaSockets, as well
as how MetaSockets interact with other adaptive compo-
nents, such as decision makers and event mediators. Results
of experiments on a mobile computing testbed demonstrate
how MetaSockets respond to dynamic wireless channel con-
ditions in order to improve the quality of interactive audio
streams delivered to iPAQ handheld computers.

1 Introduction
The large-scale deployment of wireless communication

services and advances in handheld computing devices en-
able users to interact with one another from virtually any
location. Example applications include computer-supported
cooperative work, management of large industrial sites, and
military command and control environments. Such inter-
active distributed applications are particularly sensitive to
the heterogeneity of the devices and networks used by the
participants. Specifically, an application must accommo-
date devices, from workstations to PDAs, with widely vary-
ing display characteristics and system resource constraints.
Moreover, the application must tolerate the highly dynamic
channel conditions that arise as the user moves about the
environment. One of the key challenges in designing fu-
ture interactive systems is how to enable them to adapt the
communication substrate to theses conditions at run time.�
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Developing and maintaining such software is a nontrivial
task. In this paper, we demonstrate the effectiveness of pro-
gramming language support for the development and main-
tenance of the underlying communication infrastructure that
must adapt to its environment.

Adaptability can be implemented in different parts of
the system. One approach is to introduce a layer of adap-
tive middleware between applications and underlying trans-
port services [1–3]. We are currently conducting an ONR-
sponsored project called RAPIDware that addresses the de-
sign of adaptive middleware for dynamic, heterogeneous
environments. Such systems require run-time adaptation,
including the ability to modify and replace components, in
order to survive hardware component failures, network out-
ages, and security attacks.

A major focus of our study is on programming language
support for adaptability. We previously developed Adap-
tive Java [4], an extension to Java that supports dynamic
reconfiguration of software components. This paper fo-
cuses on an Adaptive Java component called the MetaSocket
(for “metamorphic” socket). Although the socket abstrac-
tion is relatively low-level compared by many current dis-
tributed computing platforms (e.g., CORBA, Java RMI, and
DCOM), its ubiquity in distributed applications, as well
as in middleware platforms, makes it a good place to be-
gin our studies. MetaSockets are created from existing
Java socket classes, but their structure and behavior can be
adapted at run time in response to external stimuli. In this
paper, we focus on the internal architecture and the oper-
ation of MetaSockets and present a case study in the use
of MetaSockets to support audio streaming over wireless
channels. The case study, in which iPAQ handheld com-
puters are used as audio “communicators,” illustrates how
MetaSockets interact with other adaptive components, such
as decision makers and event mediators, to realize run-time
adaptability in real-time communication services. The main
contribution of this work is to propose a language-based ap-
proach to run-time adaptability and, through the case study,



to reveal several subtle design issues that need to be ad-
dressed in the development of such software.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background information on the Adaptive
Java programming language. In Section 3, we describe the
design and implementation of a MetaSocket variation that
is based on the Java MulticastSocket class. Section 4 dis-
cusses the case study in the the use of MetaSockets to sup-
port adaptive error control on wireless audio channels. Sec-
tion 5 presents results of experiments that demonstrate the
effectiveness of the proposed methods in adapting to dy-
namic changes in packet loss rate. Section 6 discusses re-
lated work, and Section 7 presents our conclusions and dis-
cusses future directions.

2 Adaptive Java Background
Adaptive Java [4] is an extension to Java that adds behav-

ioral reflection to Java’s structural reflection, by introduc-
ing new language constructs. These constructs are rooted in
computational reflection [5,6], which refers to the ability of
a computational process to reason about (and possibly al-
ter) its own behavior. The basic building blocks used in an
Adaptive Java program are components, which in this con-
text can be equated to adaptable classes. The key program-
ming concept in Adaptive Java is to provide three separate
component interfaces: one for performing normal impera-
tive operations on the object (computation), one for observ-
ing internal behavior (introspection), and one for changing
internal behavior (intercession). Operations in the compu-
tation dimension are referred to as invocations. Operations
in the introspection dimension are called refractions; they
offer a partial view of internal structure and behavior, but
are not allowed to change the state or behavior of the com-
ponent. Operations in the intercession dimension are called
transmutations; they are used to modify the computational
behavior of the component.

An existing Java class can be converted into an adapt-
able component in two steps. In the first step, a base-
level Adaptive Java component is constructed from the Java
class through an operation called absorption. As part of
the absorption procedure, mutable methods called invoca-
tions are created on the base-level component to expose the
functionality of the absorbed class. Invocations are muta-
ble in the sense that they can be added and removed from
existing components at run time using meta-level transmu-
tations. In the second step, metafication enables the cre-
ation of refractions and transmutations that operate on the
base component. The meta-level can also be given a meta-
level (meta-meta-level), which can be used to refract and
transmute the meta-level. In theory, this reification of meta-
levels for other meta-levels could continue indefinitely [6].

Adaptive Java Version 1.0 [4] is implemented using
CUP [7], a parser generator for Java. CUP takes the gram-

mar productions for the Adaptive Java extensions and gen-
erates an LALR parser, called ajc, which performs a source-
to-source conversion of Adaptive Java code into Java code.
Semantic routines were added to this parser such that the
generated Java code could then be compiled using a stan-
dard Java compiler.

3 MetaSocket Design and Implementation
In this section we describe the architecture and opera-

tion of MetaSockets. Our discussion is limited to partic-
ular type of MetaSockets designed to enhance the quality
of service for multicast communication streams. However,
the MetaSocket model is general. MetaSockets can also be
used for unicast communication and can be tailored to pro-
vide adaptive functionality in other cross-cutting concerns,
such as security, energy consumption, and fault tolerance.

Figure 1 shows the absorption of a Java MulticastSocket
base-level class by a SendMSocket base-level component,
and the metafication of this component to a MetaSendM-
Socket meta-level component. Figure 1(a) depicts a Java
MulticastSocket class and a subset of its public methods: re-
ceive(), send(), close(), joinGroup(), and leaveGroup(). Fig-
ure 1(b) shows a SendMSocket component, which is de-
signed to be used as a send-only multicast socket. The
SendMSocket component absorbs the Java MulticastSocket
class and implements send() and close() invocations that
can be used by other components. Other methods of the
base-level class are occluded. A link between an invoca-
tion and a method indicates a dependency. For example, the
send() invocation depends on the send() method, because
its implementation calls that method. Figure 1(c) shows a
MetaSendMSocket component, which metafies an instance
of the SendMSocket component and provides a refraction,
getStatus(), and two transmutations, insertFilter() and re-
moveFilter(). The use and operation of these primitives will
be explained shortly. Again, a link between a refraction (or
transmutation) and an invocation indicates a dependency.

In a similar manner, a receive-only MetaSocket can be
created for use on the receiving side of a communication
channel. The RecvMSocket base-level component absorbs
a Java MulticastSocket class. In addition to the receive()
and close() invocations, this component also provides join-
Group() and leaveGroup() invocations, which are needed for
joining and leaving an IP multicast group. All these invo-
cations depend on their respective counterparts in the Java
MulticastSocket class. The MetaRecvMSocket metafies an
instance of RecvMSocket component and provides the same
refractions and transmutations as does the MetaSendM-
Socket component. The code for MetaSendMSocket and
MetaRecvMSocket can be loaded at run time, using the Java
Class class and Java reflection package. This dynamic load-
ing of adaptive code implies the ability of Adaptive Java
applications to adapt to unanticipated changes at run time.
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Figure 1: MetaSocket absorption and metafication: (a) Java MulticastSocket as the base-level class; (b) SendMSocket as the base-level
component; (c) MetaSendMSocket, a filter-oriented meta-level component.

3.1 Internal Architecture and Operation
Figure 2 illustrates the internal architecture of both a

MetaSendMSocket and a MetaRecvMSocket, as configured
in our study. In this metafication, packets are passed
through a pipeline of Filter components, each of which pro-
cesses the packet. Example filter services include: audit-
ing traffic and usage patterns, transcoding data streams into
lower-bandwidth versions, scanning for viruses, and im-
plementing forward error correction (FEC) to make data
streams more resilient to packet loss. In some cases, such
as auditing, a filter can act alone on either the sending or the
receiving side of the channel. In other cases, such as FEC,
modification of the packet stream introduced by a filter on
the sender must be reversed by a peer filter on the receiver.
In our implementation, when a packet is processed by a fil-
ter, an application-level header is prepended to the packet.
On the receiver, these headers identify the processing order
and filters required to reverse the transformations applied
by the sender.

Packet Buffers. The set of Filter components config-
ured in a MetaSocket pipeline exchange packets via a set of
PacketBuffer components. Each filter uses a source and des-
tination packet buffer. Since a packet buffer may be used by
multiple threads, its invocations, including get() and put(),
are defined as synchronized. All filters in the filter pipeline,
execute concurrently, where each filter retrieves a packet
from its source packet buffer, processes it, and places it into
its destination packet buffer. The destination packet buffer
of a filter in the pipeline is either the source packet buffer of
the next filter or lastPacketBuffer.

Sender Operation. Let us consider the sender, as shown
in Figure 2(a). At the time of metafication, a SendMSocket
component is encapsulated by the MetaSendMSocket com-
ponent. Among other actions, the send() invocation of
SendMSocket is replaced by a new send() invocation de-
fined by the meta-level component. After metafication, any
call to the base-level send() invocation is delegated to the
meta-level send() invocation. This invocation adds a ter-
minator header to the datagram packet it receives, which

identifies packets that are ready for delivery to the appli-
cation by the receiver. Next, the meta-level send() invoca-
tion stores this packet in firstPacketBuffer (the first packet
buffer of the pipeline). Initially, both firstPacketBuffer and
lastPacketBuffer refer to the same packet buffer. While last-
PacketBuffer may change as new filters are inserted, always
pointing to the last packet buffer in the pipeline, firstPack-
etBuffer remains fixed. When SendMSocket is metafied
by MetaSendMSocket, a thread is created and assigned to
the SendMSocket send() invocation. This thread loops, re-
trieving a packet from lastPacketBuffer, creating a datagram
packet, and passing it to the original base-level send() invo-
cation, which in turn transmits the packet to the multicast
group using the send() method of the underlying Multicast-
Socket base class.

Receiver Operation. On the receiver, as shown in Fig-
ure 2(b), a MetaRecvMSocket encapsulates a base-level
RecvMSocket component. The receiver can be added to
the multicast group, either before or after metafication, by
calling its joinGroup() invocation. Once metafied, a thread
is assigned to the RecvMSocket receive() invocation. The
thread loops continuously, calling receive() and placing the
returned packet in firstPacketBuffer. The order of filters on
the receiver is the mirror image of that on the sender with
function inverted. Each filter in the pipeline processes a
packet from its source packet buffer and places it in its des-
tination packet buffer. Similar to the send() invocation on
the sender, metafication replaces the base-level receive() in-
vocation with the meta-level receive() invocation defined by
MetaRecvMSocket. Instead of calling the RecvMSocket re-
ceive() invocation, the MetaRecvMSocket receive() invoca-
tion retrieves packets directly from lastPacketBuffer. Before
returning the packet to the caller, however, the receive() in-
vocation checks the packet’s MetaSocket header. If a ter-
minator header is found at the beginning of the packet, then
receive() removes this header and returns the original packet
to the caller. Otherwise, additional filter processing needs
to be performed on the packet before delivering it to the
application. In this case, receive() generates a FilterMis-
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Figure 2: MetaSocket internal architecture: (a) MetaSendMSocket, a send-only metamorphic multicast socket; (b) MetaRecvMSocket,
a receive-only metamorphic multicast socket.

matchEvent event containing the packet and the position
of the required Filter in the filter pipeline. (Every Filter
at the receiving side performs a similar task and compares
the filter ID of the next packet to its ID.) This event is sent
to the EventMediator, a singleton component in each ad-
dresss space that decouples event generators from event lis-
teners [8]. The receive() invocation waits until the event has
been handled, meaning that the needed filter has been in-
serted in the pipeline using the insertFilter() transmutation.
Additional details on event handling are discussed in the
next section.

Inserting and Removing Filters. The transmutations
insertFilter() and removeFilter() are used to change the fil-
ter configuration, and the getStatus() refraction is used to
read the current configuration. The insertFilter() transmu-
tation sets the source packet buffer of the next filter in the
pipeline to the new filter’s destination packet buffer, sets the
new filter’s source packet buffer to the destination packet
buffer of the previous filter in the pipeline, and starts the
new filter. The removeFilter() stops the filter that should
be removed, flushes all the packets out of this filter’s des-
tination packet buffer, destroys this filter, removes the filter
from the pipeline, and sets the source packet buffer of the
next filter to the destination packet buffer of the previous
filter in the pipeline. The getStatus() returns a list of filters
IDs currently configured in the pipeline.

3.2 Syntax of Absorption and Metafication
Figure 3.2 shows simplified Adaptive Java code for the

SendMSocket component. A constructor is defined for this
component that creates a new MulticastSocket and sets it
as the base-level object for this component. Note that the
base-level object is treated as a secret of the base-level com-

ponent. A component that uses the SendMSocket compo-
nent does not necessarily need to know anything about the
underlying MulticastSocket or its interface. Two invoca-
tions, send() and close() are defined, but they simply call
their associated methods from the base object. The code for
RecvMSocket is similar. Once defined, SendMSocket and
RecvMSocket can be used via their invocations.

public component SendMSocket
absorbs java.net.MulticastSocket \
/* constructor */
public SendMSocket(...) \

setBase(new MulticastSocket(...)); ]
/* invocations */
public invocation void send(...) \

base.send(...); ]
public invocation void close() \

base.close(); ]]
Figure 3: Excerpted code for SendMSocket.

The metafication of these base-level components can be
defined at development time or later, at run time. Simpli-
fied code for MetaSendMSocket is shown in Figure 3.2. At
any point during the execution of the application, a run-
ning SendMSocket component can be metafied by calling
its constructor. The instance of SendMSocket passed to
the constructor of this meta-component is designated as the
base-level component. As described earlier, in addition to
refractions and transmutations, an invocation, send(), is re-
defined in this meta-level component. Defining an invoca-
tion at the meta-level is used to replace an invocation of



the base-level component. In this example, the new invoca-
tion does not call the Java MulticastSocket send() method.
Instead, it places the packet in firstPacketBuffer defined as
a private field of this meta-component. Another private
field, filterPipeline, is an instance of java.util.Vector
and keeps track of all the filters currently configured in
the MetaSendMSocket. The refraction getStatus() returns
a byte array containing the IDs of these filters. The trans-
mutations insertFilter() and removeFilter() are used to in-
sert and remove filters at specified positions in the filter
pipeline. The code for MetaRecvMSocket is similar to that
of MetaSendMSocket. In this case, however, the receive()
invocation is redefined in the meta-level. In the new defini-
tion of this invocation, a packet from the lastPacketBuffer ,
if available, is delivered to the caller.

public component MetaSendMSocket
metafy SendMSocket \
/* constructor */
public MetaSendMSocket(SendMSocket s)\ setBase(s); ]
/* replacing the SendMSocket.send() */
public invocation void send(...) \ ...
firstPacketBuffer.put(packet); ... ]

/* refractions */
public refraction byte[] getStatus() \
return filterPipeline.getStatus(); ]

/* transmutations */
public transmutation void
insertFilter(int pos, Filter f) \ ...
filterPipeline.add(pos, f); ... ]

public transmutation Filter
removeFilter(int pos) \ ...
return filterPipeline.remove(pos); ]

/* private fields */
private Vector filterPipeline =
new Vector();

PacketBuffer firstPacketBuffer =
new PacketBuffer();]
Figure 4: Excerpted code for MetaSendMSocket.

4 Adaptive Functionality in MetaSockets
The Java MulticastSocket class is used in many dis-

tributed applications. The MetaSockets described in the
previous section provide the same imperative functional-
ity to applications and can be used in place of regular Java
sockets. In this section, we use an example Adaptive Java
application to demonstrate how MetaSockets can further
provide adaptive functionality by interacting with other sup-
porting components, such as decision makers and event me-
diators. A key concept in this approach is that the adap-
tive functionality, whether it be related to quality-of-service,

fault tolerance, or security, is not tangled with the applica-
tion code. Rather, the “base” application code uses only
invocations provided by MetaSockets, while the code that
manipulates the behavior of MetaSockets is localized. This
separation of concerns [9] depicted in Figure 5, leads to
code that is easier to maintain and evolve to incorporate
new adaptive functionality. In the following example, we
use MetaSockets to support adaptable quality-of-service by
reacting to changes in the quality of the wireless channel.

Figure 5: Example of separation of concerns using MetaSockets.

4.1 ASA Architecture and Operation
In this study, we modified an audio streaming application

(ASA) to use MetaSockets instead of regular Java sockets,
and we added components to manage the adaptive behav-
ior. We then experimented with the ASA by streaming live
audio from a desktop workstation to multiple iPAQ hand-
held computers over an 802.11b wireless local area net-
work (WLAN). The experimental configuration is depicted
in Figure 6.

Access^`_ba cXd Wireless
Receivers
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...

Figure 6: Physical experimental configuration.

The ASA code comprises two main parts. On the send-
ing station, the Recorder uses the javax.sound package
to read live audio data from a system’s microphone. The au-
dio encoding uses a single channel with 8-bit samples. The
Recorder multicasts this data to the receivers via a wireless
access point using the send() invocation of a MetaSocket.
Each packet contains 128 bytes, or 16 milliseconds of audio
data; relatively small packets are necessary to reduce jitter
and minimize losses. On each receiving station, the Player



Figure 7: Interaction among components in the Audio Streaming Application.

receives the audio data using the receive() invocation of a
MetaSocket and plays the data using the javax.sound
package.

Figure 7 illustrates the major parts of the receiving side
of the ASA; the sending side has a similar structure. Most
of the system executes on an iPAQ handheld computer, but
one program, called a Trader, executes on a desktop work-
station. The two systems communicate over the WLAN.
In Adaptive Java, each address space comprises one or
more components, each of which in turn may comprise
several interacting components. The program running on
the iPAQ in Figure 7 comprises five main components: a
Player, a DecisionMaker, an EventMediator, a Component-
Loader, and a MetaRecvMSocket. The MetaRecvMSocket
contains several components that together implement the
filter pipeline. As indicated, some of these components are
metafied and therefore offer refractive and transmutative in-
terfaces, whereas others are simple base-level components
that offer only invocations to other components. The flow
of events among components, via an EventMediator, is also
shown.

A DecisionMaker (DM) is an optional subcomponent
within any Adaptive Java component. According to a set of
rules applied to the current situation, a DM controls all of
the nonfunctional behavior of the subcomponents of its con-
tainer component. DMs are arranged hierarchically, such
that a DM inherits rules from a higher-level DM and might
provide rules to lower-level DMs. (In our simple example
application, the main component on the iPAQ contains a
single DM.) Depending on its rules and the current situa-
tion, a DM might decide to metafy or change the config-

uration of an existing component by invoking transmuta-
tions of the component. A transmutation might simply set
the value of an internal variable, or might involve the in-
sertion or removal of a subcomponent (such as a filter, in
our example). In the insertion case, the DM contacts the
ComponentLoader (CL) and requests the needed compo-
nent. The CL is unique to an address space. If the CL
does not find the component in its cache, it sends a request
to a component Trader, which may reside on another com-
puting system. The Trader returns a component implemen-
tation corresponding to a syntactic or semantic component
request. In our current implementation, we use simple iden-
tifiers to search for components. Eventually, the CL uses
the java.lang.ClassLoader to load this implemen-
tation, creates an instance of this class, and returns it to the
local DM. The ability to dynamically load components is
especially important for mobile devices, where resources
might be limited and overhead should be minimized.

Components can interact directly via invocations, refrac-
tions and transmutations. To support asynchronous interac-
tions, we implemented an event service. An EventMediator
(EM) decouples event generators from event listeners [8].
The ASA sender and receiver each contain a single EM
that handles all events in the respective program. A lis-
tener registers its interest in an event by calling the EM’s
registerInterest() invocation. When an event is detected by
a component, it calls the notify() invocation of the EM. The
EM records the event and subsequently alerts all listeners
by calling their notify() invocations. To complete the ear-
lier discussion on missing filters, let us consider the situ-
ation in which the thread in the receive() meta-level invo-



cation detects that another filter needs to be configured in
the pipeline. A FilterMismatchEvent event is sent to the
EM, which forwards it to the DM. The DM decides to in-
sert a new filter based on information carried by the event
and the pipeline status retrieved using the getStatus() re-
fraction. The DM requests the CL to load the missing filter,
after which the DM inserts it at the proper location in the
pipeline.

4.2 Filter Components
In this case study, we used two types of filters in

MetaSockets. The first type provides forward error correc-
tion (FEC) encoding and decoding functionality. The sec-
ond type is used to monitor packet loss conditions and to
forward events of interest to the DM. In turn, the DM may
decide to insert, remove, or modify an FEC filter.

FEC is widely used in wireless networks. In wireless
environments, factors such as signal strength, interference,
and antennae alignment produce dynamic and location-
dependent packet losses. In current wireless LANs, these
problems affect multicast connections more than unicast
connections, since the 802.11b MAC layer does not provide
link-level acknowledgements for multicast frames. FEC can
be used to improve reliability by introducing redundancy
into the data channel. Our filters use ( s�t�u ) block erasure
codes [10]. As shown in Figure 8, u source packets are
converted into a group of s encoded packets, such that anyu of the s encoded packets can be used to reconstruct theu source packets [10]. These codes are ideal for wireless
multicasting, since a single set of parity packets can correct
different packet losses among receivers.
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Figure 8: Operation of block erasure code.

The FECEncoder and FECDecoder components are ex-
tended from the Filter component and use a Java FEC pack-
age . The FECEncoder runs on the sender. This component
retrieves u packets from its source packet buffer, generatesszy{u parity packets, and places the original u packets plus
the s|y}u parity packets into its destination packet buffer.
The FECDecoder runs at the receiving side and retrieves up
to u packets from its source packet buffer, decodes them
if possible, and places the recovered original u packets in
its destination packet buffer. Any unneeded parity packets

are simply dropped. If fewer than u out of the s packets
arrive, for a given FEC group, then the FECDecoder re-
trieves any data packets and places them into its destina-
tion packet buffer. The MetaFECEncoder and MetaFECDe-
coder, shown in Figure 9, metafy the FECEncoder and
FECDecoder components, respectively. Each provides a
getNK() refraction and setNK() transmutation, which are
used at run time to read and set the values of s and u . If a
packet arrives with a different s or u value than is expected,
the MetaFECDecoder fires a FECMismatchNKEvent event.
In response, the DM uses setNK() transmutation and adjusts
the values for u and s appropriately.

Figure 9: Design of forward error correction filters.

The second type of filter used in our case study, moni-
tors events related to packet loss rate and reports these to the
DM. We developed two sets of filters. The SendNetLossDe-
tector and RecvNetLossDetector filters monitor the raw loss
rate of the wireless channel. The SendAppLossDetector and
RecvAppLossDetector filters monitor the packet loss rate as
observed by the application, which may be lower than the
raw packet loss rate due to the use of FEC. The metafied
versions of these filters is shown in Figure 10. In our ex-
periments, SendAppLossDetector is used as the first filter
on the sender side, and RecvAppLossDetector is used as the
last filter on the receiver. Conversely, SendNetLossDetec-
tor is the last filter on the sender, and RecvNetLossDetector
is the first filter on the receiver. The sender’s filters simply
prepare packets by prepending a header containing the iden-
tifier of the corresponding peer filter on the receiver. Each
filter on the receiver uses sequence numbers to calculate
the packet loss rate over a specified window in the packet
stream and stores this information in a vector. Metafying
these components provides refractions and transmutations
to read the current loss rate and to set or change upper and
lower thresholds with respect to the loss rate.



Figure 10: Design of packet loss monitoring filters.

The sender’s DM (the global DM) and the receiver’s DM
(the local DM) work together and use a simple set of rules to
make decisions about the use of filters and changes in their
behavior. If the loss rate observed by the application rises
above a specified threshold, then the global DM can decide
to insert an FEC filter in the pipeline or modify the ~5s�t�ug�
parameters of an existing FEC filter. On the other hand, if
the raw packet loss rate on the channel drops below a lower
threshold, then the level of redundancy may be decreased,
or the FEC filter may be removed entirely. To realize this
behavior, the local DM uses the setUpperBound() and set-
LowerBound() transmutations of the metafied filters. The
local DM also configures the MetaRecvAppLossDetector
to generate an UnacceptableLossRateEvent if the observed
loss rate rises too high, by calling the setInform(true) trans-
mutation. When this event fires, the global DM will eventu-
ally take action and attempt to reduce the observed loss rate
by inserting an FEC filter or changing the parameters of an
existing FEC filter. After firing such an event, the local DM
calls setInform(false) for the MetaRecvAppLossDetector to
suppress further events from this filter. At this time, the
local DM also calls setInform(true) for the MetaRecvNet-
LossDetector, so that an AcceptableLossRateEvent will fire
if the network loss rate returns to a satisfactory level. When

this event fires, depending on its rules, the global DM can
decide to reduce the s -to- u ratio or to remove the FEC filter
entirely. As in the first case, the local DM also calls set-
Inform(false) for the MetaRecvNetLossDetector to suppress
further events. Any time a filter is inserted or removed on
the sender, a FilterMismatchEvent will eventually fire on
the receiver, causing the filter pipeline at the receiver to be
adjusted accordingly.

5 Performance Evaluation
To evaluate the effect of MetaSockets on the perfor-

mance of audio streaming, we conducted an experiment us-
ing the ASA. The Recorder program is configured to record
8000 samples per second of live audio, using a single chan-
nel at 8 bits per sample. Samples are collected into 128-byte
packets packets, that is, each packet contains 16 millisec-
onds of audio data. We used ~���tE�I� FEC filters. The up-
per threshold for the RecvAppLossDetector to generate an
UnAcceptableLossRateEvent is 30%, and the lower thresh-
old for the RecvNetLossDetector to generate an Accept-
ableLossRateEvent is 10%. One well-known difficulty in
conducting experimental research in wireless environments
is the ability to reproduce results, given the highly dynamic
nature of the medium [11]. In these tests, we created arti-
ficial losses by dropping packets in software according to a
predefined loss function. In this way, we are able to com-
pare the effects of different parameter settings on the behav-
ior of MetaSockets.

Figure 11 plots packet loss as observed by the two loss
monitoring filters on the receiver. The Network Packet Loss
curve experiences two periods of high packet loss. The Ap-
plication Packet Loss curve shows the effect of dynamic in-
sertion and removal of the FEC filter, according to the rules
described in Section 4.2. When the program begins execu-
tion, the sender inserts a SendAppLossDetector filter into
its MetaSocket, which quickly causes the receiver to insert
the corresponding RecvAppLossDetector. At packet set 8
(meaning the 800th packet), the RecvAppLossDetector fil-
ter detects that the loss rate has passed the upper threshold.
The filter fires an UnAcceptableLossRateEvent, causing the
local DM to request an FEC filter. The global DM decides,
based on its set of rules, to insert two filters, an FECEncoder
filter with default parameters s���� and u���� , and a Send-
NetLossDetector filter, at the second and third positions in
the MetaSendMSocket filter pipeline, respectively. When
packets containing the headers of the two new filters begin
arriving at the receiver, the RecvAppLossDetector detects a
packet header that does not match its own identifier. There-
fore, it fires a FilterMismatchEvent at two different times,
one for each new packet type. These events result in the in-
sertion of a RecvNetLossDetector filter and a FECDecoder
filter at the first and second positions in the MetaRecvM-
Socket filter pipeline, respectively.
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Figure 11: MetaSocket packet loss behavior .

As shown in Figure 11, the ~��gtX�I� FEC code is very ef-
fective in reducing the packet loss rate as observed by the
application from packet set 8 to packet set 45. which used
FEC codes in an ad hoc proxy architecture. At packet set
45, the RecvNetLossDetector detects that the loss rate has
dipped below the 10% lower threshold, so it fires an Ac-
ceptableLossRateEvent. In response, the local DM sends a
request to the global DM to remove the FEC filter. The DM
complies, since under low-loss conditions, the 100% over-
head of an ~��gtX�I� FEC code simply wastes bandwidth. It also
removes the SendNetLossDetector filter in order to min-
imize data stream processing under favorable conditions.
The arrival of packets without the two headers produces
two FilterMismatchEvent events at the receiving side, and
the peer filters are removed. As a result, the loss rate expe-
rienced by the application is again the same as the network
loss rate. At packet set 60, the FEC filter is again inserted,
due to high loss rate, and it is later removed at packet set 80.
Considering Figure 11 as a whole, we see that the loss rate
observed by the application is very low, with the exception
of two brief spikes. In order to minimize overhead, FEC
is applied only when necessary. This example illustrates
how Adaptive Java components can interact at run time to
recompose the system in response to changing conditions.
While a task such as FEC filter management can be imple-
mented in an ad hoc manner, run-time metafication in Adap-
tive Java enables such concerns to be added to the system
after it is already deployed and executing.

6 Related Work
Several adaptive middleware projects involve adaptive

extensions to CORBA [1–3, 12]. In contrast to a CORBA-
based design, however, our focus in this study is on pro-
gramming language constructs to support adaptive inter-
faces to arbitrary components. The MetaSocket architecture
described in this paper bears some resemblance to portable
interceptors, initially introduced in TAO [13, 14], standard-

ized in CORBA 2.6, and used also in dynamicTAO [15].
However, Adaptive Java allows “interception” of any invo-
cation, using a metafication that includes a new definition
for the invocation, and in this sense is more general.

Other researchers have addressed the use of program-
ming language constructs to realize adaptable behavior.
For example, JDrums [16] and MetaJava [17] introduce
a method for supporting dynamic update of Java pro-
grams; however, both require modifications to the JVM.
Our “weaving” of adaptive code with the base application is
reminiscent of aspect-oriented programming [9]. Although
many projects in the AOP community address compile-time
weaving [18], a growing number of projects focus on run-
time composition [19, 20]. By defining a reflection-based
component model, Adaptive Java also supports run-time re-
configuration but is not restricted to the AOP model, which
requires identification of predefined “pointcuts” at compile
time. A related concept is composition filters [21], which
provide a mechanism for disentangling the cross-cutting
concerns of a software system. Besides filters, however,
Adaptive Java can be applied to components that interact in
arbitrary ways.

The PCL project [22] also focuses on language support
for run-time adaptability and is perhaps most closely re-
lated to our work. PCL is intended for use directly by ap-
plications. Our concept of “wrapping” classes with base
components is similar to the use of Adaptors used in PCL.
However, modification of the base class in PCL appears to
be limited to changing variable values, whereas Adaptive
Java transmutations can modify arbitrary structures or sub-
components. Moreover, by combining encapsulation with
metafication, Adaptive Java can be used to realize adapta-
tions in multiple meta-levels.

7 Conclusions and Future Directions
In this work, we investigated the use of of Adaptive Java

to support run time adaptation in iPAQ handheld comput-
ers used as audio “communicators.” Our study focused
on an adaptable component called the MetaSocket. While
we have discussed the use of MetaSockets previously [23],
this paper is the first to describe the internal architecture
and operation of MetaSockets. Specifically, we described
in detail how adaptive behavior is implemented and how
MetaSockets interact with other adaptive components, in-
cluding decision makers and event mediators. Results from
experiments on a mobile computing testbed demonstrate the
effectiveness of these methods in responding to dynamic
wireless channel conditions. It is our hope that the details
of this design, combined with the case study, will be use-
ful to other researchers and developers who are interested
in language-supported, run-time adaptability for distributed
object-oriented systems.

While this paper demonstrated the application of



MetaSockets to a specific communication service, we em-
phasize that the Adaptive Java mechanisms are general.
Any component in the system can be metafied and adapted
at run time. Currently, we are investigating the use of Adap-
tive Java to address other key areas where software adapt-
ability is needed in distributed systems: dynamically chang-
ing the fault tolerance properties of components, adaptive
security policies dynamically woven across components,
mitigation of the heterogeneity of system display charac-
teristics, and energy management strategies for battery-
powered devices.

Further Information. A number of related papers and
technical reports of the Software Engineering and Network
Systems Laboratory can be found at the following URL:
http://www.cse.msu.edu/sens.
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